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The purpose of this work was to predict liquid-liquid equilibrium of 
binary systems including N-formylmorpholine (NFM) with alkanes 
(heptane, nonane, and 2,2,4-trimethylpentane) over the 
temperature range from around 300 K to 420 K. Therefore, three 
feed-forward artificial neural network (ANN) models were 
developed for the three systems. Compositions of alkanesin light 
phase and heavy phase were considered as network inputs, and the 
temperature was the output variable. Genetic algorithm (GA) 
method was used to design the neural network. It minimized the 
total mean squared error (MSE) between net output and desired 
output with optimizing weights and biases of the ANN. The validity 
of the models was evaluated through a test data set, which was not 
used in the training data set. The results of this work show that the 
hybrid of artificial neural network and genetic algorithm (ANN–GA) 
can estimate the LLE of the binary systems with high precision. 
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Graphical Abstract 

 

Introduction 

Separation processes are one of the most important operations in chemical processes. In the 

petroleum industry, separation of aromatic hydrocarbons from aliphatic hydrocarbons has great 

importance. The common process for these separations is liquid-liquid extraction [1]. For 

extraction of aromatics, many solvents such as sulfolane [2–5], glycol [6, 7], N-formylmorpholine 

(NFM) [8–10] and combinations of the solvents [11] have been used. In the petroleum industry, 

there is much attention to morpholine derivatives e.g. N-methylmorpholine, hydroxyethyl 

morpholine, N-acetylmorpholine, N-formylmorpholine (NFM) and phenylmorpholine because of 

their high effectiveness on the recovery of aromatics [12]. N-formylmorpholine (NFM) as an 

extraction solvent is widely used to separate aromatic hydrocarbons from aliphatic. NFM has low 

viscosity, good fluidity and good thermal stability [1]; also, it minimizes aromatic content in 
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gasoline and refines the extracted aromatics. Thus, NFM plays an important role in liquid extraction 

and has a model for predicting phase equilibrium and thermodynamic properties of systems 

containing morpholine whose derivatives are essential. 

For a better understanding of their thermodynamic behavior and for the development of the model, 

trustworthy experimental phase equilibrium data are needed. Therefore, several researchers 

started with measurements of the required properties of the liquid-liquid equilibrium. Some LLE 

data of binary systems including NFM with n-alkanes [8-13] and cycloalkanes [10] and some of the 

ternary systems including NFM, aromatics, and alkanes [14-17] have been investigated. Some 

experimental LLE data for a mixed solvent system (N-formylmorpholine + sulfolane, n-hexane and 

benzene) over the temperature range of 298.15 to 318.15 K were determined by J. Mahmoudi and 

M.N. Lotfollahi [18]. The LLE data of NFM with aromatics, n-hexane, n-heptaneand water at 

different temperatures from 293 to 333 K were obtained by Cincotti et al. [8]. The LLE results for 

the ternary mixture of (NFM + 2,2,4-trimethylpentane + ethylbenzene) at temperatures 303.15, 

313.15, and 323.15 K were investigated by Z. Wang et al. [1]. However, according to the importance 

of NFM, the liquid-liquid equilibrium data are still comparatively scarce for the binary systems 

containing NFM in the studies; and a mathematical model with the aim of contributing to the 

knowledge of liquid-liquid equilibrium with NFM can be so useful. There are limited empirical 

correlations for predicting LLE characterization. On the other hand, the artificial neural network 

(ANN) models on VLE data in several subjects have been carried out [19-21] but there are limited 

studies on LLE data using ANN models. 

The aim of this work is to predict LLE properties for the binary systems including N-

formylmorpholine with alkanes using the feed-forward ANN model, trained by back propagation 

algorithm (BP), and genetic algorithm (GA). The GA technique was used for optimizing the initial 

weights and biases of the back-propagation network. It minimizes the total mean squared error 

(MSE) between the output of the developed ANN and desired output with optimizing weights and 

biasesof the ANN [22]. In this respect, three artificial neural network models have been carried out 

on the LLE data of binary systems {heptane (1) + NFM (2)}, {nonane (1) + NFM (2)} and {2,2,4-

trimethylpentane (1) + NFM (2)}. Compositions of component 1 in light phase and heavy phase 

were considered as network inputs, and the temperature was the output variable as the target of 

the model. Z. Wang et al. [23] applied the experimental values of the LLE data. By using a large 

number of parameters (weights and biases), the ANNis a suitable method for estimating flexible 

mathematical functions. In this work, the hybrid artificial neural network and genetic algorithm 

were used to obtain global convergence with a high accuracy and avoid a local answer. 



Estimation of LLE Data for Binary Systems…  P a g e  | 70    

 

Experimental 

Hybrid neural networks and genetic algorithm 

Artificial neural networks (ANNs) which are collections of flexible mathematical functions imitate 

biological systems using a number of interconnected artificial neurons to recognize complex and 

nonlinear relationships [24]. Because of this ability of the ANNs, they can be used in various fields 

of chemical engineering [25]. The ANN learns the data pattern using the “training” algorithms. 

These methods are extremely useful in recognizing templates in complex data by providing non-

linear equations between inputs and outputs of the network. Each neuron of the network is 

connected with a weight to the other neurons via direct communication bonds, which finally 

provides a reasonable relationship between input and output values. The output of each neuron 

generated by summation of weighed inputs plus bias under a transfer function. In common, ANNs 

are parallel organized structures that comprised of interconnected neurons as input layer 

(independent variables), one or more hidden layers, be located between them, and an output layer 

(dependent variables) [26] as shown in Figure 1. The number of neurons of the input and output 

layers is usually determined by the number of input and output variables (U and Y), respectively. 

However, the number of neurons in the hidden layers is changeable and it is important for 

optimization of the network, which will be studied in the following sections. 

For developing the model to predict characteristics of LLE, The following steps are required: The 

first step in designing artificial neural network models, which is one of the most important 

decisions in the development of the neuromorphic model, is to prepare an adequate database to 

train the network and to evaluate its capacity for generalization [27]. The next step is data 

preprocessing. It is a normalization procedure for presenting the input data to the network and set 

the data between the largest data as 1 and the smallest one as zero number. The third step is 

network structure. In this part, the number and type of network layers, number of neurons in 

layers, and the selection of transfer functions are determined. The next step in designing ANN is 

training. Training of the network means adjusting the weights and biases in order to make the 

network outputs closer to the aim values. The most commonly used neural network training 

algorithm is a back propagation algorithm (BP algorithm). This algorithm has the main defect in 

training because of its random choice in weights and biases. It may cause trapping into local 

minimum and converge slowly [27]. There are many global search skills to overcome these 

disadvantages. One of the most effective techniques that used for optimizing the initial weights and 
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biases of the BP network is the genetic algorithm (GA) [28]. In this work, the initial weights and 

biases of the artificial neural network were optimized using this method. 

 

Figure 1. Topology of three-layer back propagation artificial neural network used in this study 

GA is an extremely important method in optimization inspired by Darwinian biological evolution 

principle, which is quite popular in engineering optimization. The optimization procedure involves 

selection, elitism, crossover, and mutation operations and starts with a set of random solution 

(population) and develops through continuous iterations (generations) for getting better solutions 

[27-29]. In brief, GA uses four steps to obtain the optimum weights of ANN as follows [22-30]: 

 Generate random initial population of chromosomes (weights and biases). 

 Evaluate the fitness values (objective function value) of solutions (computing their performance 

error). 

 Represent new generation by selection, elitism, crossover, and mutation. 

 Use new population for the next generation. The same procedure is repeated for next 

generations and the algorithm is run for a limited number of cycles. The final set of weights and 

biases was designated as the result of GA and they are saved for BP training. After the GA training, 

the BP algorithm starts using the solution supplied by GA [22]. 
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Figure 2. Flowchart of the artificial neural network–genetic algorithm (ANN–GA) model 
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The final step in designing ANN is to test the performance of the model. At this step, test data are 

used in the ANN model and in order to evaluate the performance of the model, the mean relative 

error (MRE) and the mean square error (MSE) between the experimental and estimated values 

were measured. Figure 2. shows the flow chart of the artificial neural network–genetic algorithm 

(ANN–GA) model which has been used in this work. 

Developing correlations using ANN-GA modeling and training 

The ANN that is used in this study is a multilayer feed-forward neural network with the Levenberg-

Marquardt algorithm [31-33] for the correction of the weights and a learning order of the back 

propagation (BP) of errors. 

The experimental LLE data for three mixtures composed of N-formylmorpholine (NFM) with 

alkanes (heptane, nonane, and 2,2,4-trimethylpentane) over the temperature range from around 

300 K to 420 K, were measured by Wang et al. [23] and were used for training and testing the ANN-

GA model. The investigated systems were at the equilibrium condition. There were two 

components in each of the systems, N-formylmorpholine (NFM) with an alkane. In this study, the 

ANN was developed for predicting temperature (output data) as a function of mole fraction of 

alkane in light phase (X11) and mole fraction of alkane in heavy phase (X12) (input data). Before the 

training of the ANNs, because of the different range sizes between input and output data, it is 

usually common to normalize input and output data. So, all data were normalized in the range of 0-

1 in order to avoid any computational difficulty, using the following relation: 

valueminimumvaluemaximum

valueminimum valuedata
dataNormalized






                                                                       (1) 

The next step after determining the input and output is to develop the ANN architecture. An ANN 

with one hidden layer was chosen as the network structure. Theoretical procedures for obtaining 

the appropriate number of hidden layer are not available. Therefore, the trial and error method was 

used to determine the number of neurons in the layer. Increasing the number of neurons in hidden 

layer may bring over fitting. So normally a small number of neurons were chosen for the hidden 

layer and if the deviation of the trained ANN model does not reach to the optimal tolerance, the 

number of neurons in the hidden layer was increased and estimation of performance is repeated 

[34]. Therefore, two numbers of neurons were decided for the hidden layer. This number was 

obtained through experience, so that the deviation of the trained model is in optimal tolerance. 
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In the neural network model, the final output of the ANN is obtained from the following 

relationship [35]: 
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here Y, U, m, n are the final answer of the network, the input value of the network, the number of 

input variables and the number of neurons; ‘i’, ‘j’ and ‘k’ refer to the input, hidden, and output layer, 

respectively. In this study, the “hyperbolic tangent sigmoid” transfer function was chosen for the 

hidden layer and “linear” function was considered for the output layer. These functions are defined 

as follows: 

1
e1

2
(x)F

x2t 





                                                                                                                                               (3) 

x(x)Fl 
                                                                                                                                                                (4) 

As mentioned for training networks, random initial weights and biases may cause trapping into 

local minima and converge slowly. So in this study, GA searching approach was used for solving 

problems on which traditional methods do not succeed to achieve the global optimum result 

(minimum or maximum). Based on results, the best population size in the case studied here was 

found to be 100. The crossover probability and mutation probability are determined and their 

values were found to be 0.8 and 0.01, respectively. The GA would stop after the end of 300 

generations because it had almost reached optimal values. 

For evaluating the validity of the model, the data points were divided randomly into two parts, the 

first data set (around 70% of input data) was selected for training the network and the second data 

set (remaining data) was employed for testing the model. 

Results and discussion 

In the present study, three ANN–GA models were developed for three LLE systems. The 

experimental liquid-liquid equilibrium data for the three binary systems (nonane + NFM), (2,2,4-

trimethylpentane + NFM) and (heptane + NFM), are representedin Tables 1 to 3, respectively. The 

ANN–GA is trained with randomly 70 percent of data points and the rest data points considered as 

the test data points. Before being fed into ANN-GA model, because of difference in magnitude and 

dimension of experimental data, it was normalized. 
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Table 1. Experimental LLE data of temperature at the mole fraction of light phase x11 and heavy phase x12 for 

the system {Nonane (1) + NFM (2)} [11] 

T/K Light phase x11 Heavy phase x12 T/K Light phase x11 Heavy phase x12 

303.15 0.9801 0.0118 365.85 0.8952 0.0226 

312.95 0.9661 0.0148 370.95 0.8841 0.0289 

320.65 0.9572 0.0176 392.45 0.8344 0.0346 

327.97 0.9484 0.0192 402.15 0.8107 0.0347 

334.95 0.942 0.0212 409.65 0.7979 0.0373 

343.04 0.9322 0.0219 415.25 0.7886 0.0386 

350.65 0.9236 0.0202 427.85 0.7621 0.0433 

356.95 0.9098 0.0213       

 

Table 2. Experimental LLE data of temperature at the mole fraction of light phase x11 and heavy phase x12 for 
the system {2,2,4-trimethylpentane (1) + NFM (2)} [11] 

T/K Light phase x11 Heavy phase x12 T/K Light phase x11 Heavy phase x12 

307.85 0.9705 0.0193 355.55 0.8838 0.0316 

312.55 0.9673 0.022 365.25 0.8677 0.0382 

318.85 0.964 0.0248 374.55 0.8426 0.0417 

323.64 0.9577 0.0263 383.75 0.804 0.0413 

329.33 0.9542 0.0273 391.65 0.7784 0.0428 
334.85 0.9447 0.0289 399.65 0.7595 0.047 

342.5 0.9313 0.0298 408.45 0.7401 0.0504 

349.4 0.9134 0.0311       
 

Table 3. Experimental LLE data of temperature at the mole fraction of light phase x11 and heavy phase x12 for 
the system {heptane (1) + NFM (2)} [11] 

T/K Light phase x11 Heavy phase x12 T/K Light phase x11 Heavy phase x12 

298.75 0.9794 0.0183 348.35 0.9527 0.0399 

302.85 0.9688 0.0216 357.75 0.9467 0.0446 

312.05 0.9645 0.0243 369.35 0.9279 0.0536 

320.05 0.9624 0.0277 378.3 0.9087 0.0667 

329.35 0.9605 0.0323 389.35 0.8819 0.0804 

337.65 0.9575 0.038       
 

The ANNs had one hidden layer and the number of neurons in the hidden layer was evaluated by 

the use of a trial and error method. A large number of neurons in hidden layer can cause overfitting 

in which the model can perfectly predict the training data, but it is unable to sufficiently predict the 

test data set. The optimal number of neurons in the hidden layer should be determined. In this 

study, various numbers of neurons were tested for the hidden layer, and the optimal number of 



Estimation of LLE Data for Binary Systems…  P a g e  | 76    

 
neurons was evaluated. The deviation, which was used for choosing the best ANN architecture, is 

the mean square error (MSE) defined as follow: 





N

i

ii )yt(
N

MSE
1

21

                                                                                                                                         (5) 

Where N is the number of data points, t is the target (experimental) data, and y is the estimated 

value. 

The results of the method for achieving the optimum number of neurons in the hidden layer have 

been presented in Figure 3. In the Figure, MSE values of different ANN configurations, of each the 

three networks, for estimation of T are presented. The configuration with minimum error (MSE) is 

determined as the best network architecture. According to Figure 3, the best network configuration 

has one hidden layer with two neurons. The minimum MSE values of the ANN for the prediction of 

system temperature were 0.5168, 2.7606 and 0.5034, for (nonane + NFM), (heptane + NFM) and 

(2,2,4-trimethylpentane + NFM) systems, respectively. 

 

Figure 3. MSE values for different number of hidden neurons in the developed ANNs 

Hence, for the three LLE systems, the final output of the ANN-GA via input compositions can be 

obtained using the parameters (weights and biases) of the selected ANN architecture in Eq. (2), as 

follows: 

} 
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nonane (1) + NFM (2)  {:  
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2,2,4-} trimethylpentane (1) + NFM (2)  {:  
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It should be noted that input and output data are in normalized range (Eq. 1). Table 4. reports the 

MSE and MRE values of the systems with optimum hidden neurons and same iterations. The MSE 

equation mentioned as Eq. (5) and mean relative errors (MRE) calculated as follows: 
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                                                                                                                          (9) 

Where N, t and y parameters are the number of data points, the target (experimental) data, and the 

estimated value, respectively, alike in MSE equation. 

Table 4. Best MSE and MRE values of different training algorithm for ANNs with 2-2-1 configuration 

Training  
Nonane (1) 

 + NFM (2) 

2,2,4-trimethylpentane(1)  

+ NFM (2) 

heptane (1)  

+ NFM (2) 

algorithm 
MSE MRE (%) MSE MRE (%) MSE 

MRE 

(%) 

Trainlm 0.5168 0.1365 0.5034 0.1273 2.7606 0.3626 

Traincgb 2.3993 0.3292 11.1145 0.6737 4.3248 0.5546 

Trainbr 4.4419 0.4992 5.8544 0.5664 7.5108 0.7061 

Traingda 68.52 2.3190 96.31 3.4170 43.53 1.8102 
 

In additions, these errors reported for various training algorithms including Levenberg–Marquardt 

algorithm (trainlm), conjugate gradient back–propagation with Powell–Beale restarts (traincgb), 
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bayesian regularization back–propagation (trainbr), and gradient descent with adaptive learning 

rate back-propagation (traingda). The obtained errors in this table revealed that using the 

Levenberg-Marquardt algorithm (trainlm) leads to the best answer. 

The comparison between the simulation results for prediction of temperature for the developed 

ANN-GA and the experimental training data points is illustrated in Figure 4. It is tried to illustrate 

the validity of the model in the prediction of the temperature for {nonane (1) + NFM (2)} mixture. 

The best fit, that output is equal to targets, is appeared by the solid line. Figure 4. shows a good 

correlation between the ANN predictions and the experimental data and it indicates that the neural 

network estimated values are close to the experimental data for all data points. Also, the accuracy 

of the developed network has been tested by using the test data set, which was not used for the 

training step. In addition, the evaluations indicate that the MSE and MRE for the training data are 

0.1954 and 0.0996, respectively, and for the test data are 0.5537 and 0.1460, respectively. 

 

Figure 4. Scatter diagram showing the performance of Eq. (1) for predicting the (liquid-liquid) equilibrium 

data of the {nonane (1) + NFM (2)} mixture 

In the same way, Figures 5 and 6 show a comparison between predicted and experimental data for 

the LLE characteristics, for {2,2,4-trimethylpentane (1) + NFM (2)} and {heptane (1) + NFM (2)} 

mixtures, respectively. The results for the {2,2,4-trimethylpentane (1) + NFM (2)} mixture indicate 

that the MSE and MRE for the training data are 0.0501 and 0.0504, respectively, and for the test 

data are 1.7624 and 0.3494, respectively. Moreover, it indicates that the MSE and MRE for the 

training data are 0.9500 and 0.2221, respectively, and for the test data are 7.5888 and 0.7374, 
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respectively, for the {heptane (1) + NFM (2)} mixtures. This means that the hybrid neural network 

and the genetic algorithm was also suitable for predicting the data points which are not used in the 

training data set. 

 

Figure 5. Scatter diagram showing the performance of Eq. (2) for predicting (liquid-liquid) equilibrium data 

of the {2,2,4-trimethylpentane (1) + NFM (2)} mixture 

 

Figure 6. Scatter diagram showing the performance of Eq. (3) for predicting (liquid-liquid) equilibrium data 

of the {heptane (1) + NFM (2)} mixture 
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Conclusion 

In the present study, three ANN–GA models were developed for three systems including N-

formylmorpholine (NFM) with alkanes (heptane, nonane, and 2,2,4-trimethylpentane) in order to 

predict the temperature (T) in liquid-liquid equilibrium conditions. The value of T was used as a 

function of the primarily influencing parameter, mole fraction of the alkane in light phase (X11) and 

mole fraction of alkane in heavy phase (X12) which were considered in the inputs of the networks. 

In this work, the hybrid neural network and genetic algorithm were successfully applied to estimate 

the LLE characteristics. Three sets of experimental data points were used for training the feed-

forward neural network. The best architecture for the network has one hidden layer with two 

neurons which is obtained by trial and error. GA which can be regarded as one of the most effective 

techniques is used for optimizing the initial weights and biases of the ANN network. This method 

was applied as a very useful technique in the design of the network. The performance of the 

proposed ANN-GA model was also examined through is application in a test data set consisting of 

about one-third of the experimental data not used for training. The results of applying the hybrid of 

artificial neural network and genetic algorithm (ANN-GA) model show that the method has a very 

good performance in estimating the LLE data of the binary systems containing N-

formylmorpholine. 

List of symbols 

b :bias 

w : weight 

F : transfer function 

m : number of input variables 

n : number of neurons 

N : number of data points 

t : target 

T : temperature [K] 

U : input value of the network 

Y : final answer of the network 

Subscripts 

i : input layer 

j : hidden layer 

k : output layer 
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