Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

School of Science and Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, G.A. 30043, USA

Abstract

Trifluoromethylated and ring-fluorinated 4H-chromones have been prepared via cyclodehydration and via the baker-venkataraman rearrangement.  The cyclodehydration of 4,4,4-trifluoro-1-(1-naphthol-2-yl)-1,3-butanedione was performed under a variety of base promoted and acid catalyzed processes enroute to 2-trifluoromethyl-β-naphthochromone. Using microwave irradiative, sonication and conventional processes, selected o-hydroxyaromatic ketones underwent single-pot, based promoted baker-venkataraman rearrangements with trifluoroacetic anhydride to give trifluoromethylated 4H-chromones in yields ranging from 50-82%. Microwave irradiation conditions allowed for yields ranging from 50-80%, which compare favorably to yields achieved via conventional methods (60-82%) as well as reducing reaction times by 55% compared to conventional refluxing conditions.

Graphical Abstract

Cyclodehydration and Baker-Venkataraman Rearrangement Methodologies for the Preparation of Fluorinated 4H-Chromones

Keywords

Main Subjects

[1] Patel M. Bhila V., Patel N., Patel A., Brahmbhatt D. Med. Chem. Res., 2012, 21:4381
[2] Sloop J.C., Bumgardner C., Washington G., Loehle W.  J. Fluorine Chem., 2002, 118:135
[3] Sloop J.  Journal of Chemistry, 2017, 2017:15 pages
[4] van Klink J., Larsen L., Perry N., Weavers R., Cook G., Bremer P., MacKenzie A., Kirikae T. Bioorg. Med. Chem., 2005, 13:6651
[5] Sloop J.C., Holder C., Henary M. Eur. J. Org. Chem., 2015, 16:3405
[6] Bumgardner C.L., Sloop J.C.  J. Fluorine Chem., 1992, 56:141
[7] Tawfik H., Ewies E., El-Hamouly W. Int. J. Res. Pharm. Chem., 2014, 4:1046
[8] Dias T., Duarte C., Lima C., Proença M., Pereira-Wilson C. Eur. J. Med. Chem., 2013, 65:500
[9] Sloop J.C., Jackson J.L., Schmidt R.D. Heteroatom Chem., 2009, 20:341
[10] Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Laganà G., Daglia M., Meneghini S., Nabavi S.M. biofactors, 2017, 43:495
[11] Xiang H., Zhao Q., Tang Z., Xiao J., Xia P., Wang C., Yang C., Chen X., Yang H. Org. Lett., 2017, 19:146
[12] Yue Y., Peng J., Wang D., Bian Y., Sun P., Chen C. J. Org. Chem., 2017, 82:5481
[13] Castañeda I., Ulic S., Védova C., Metzler-Nolte N., Jios J. Tetrahedron Lett., 2011, 52:1436
[14] Shoaib M., Shah S.W.A., Ali N., Shah I., Umar M.N., Shafiullah Tahir, M.N., Ghias M. Bulgarian Chemical Communications, 2016, 48:414
[15] Vrzal R., Frauenstein K., Proksch P., Abel J., Dvorak Z., Haarmann-Stemmann T. PLoS ONE, 2013, 8:74917
[16] O’Leary E., Jones D., O’Donovan F., O’Sullivan T. J. Fluorine Chem., 2015, 176:93
[17] Sosnovskikh V., Irgashev R., Barabanov M. Synthesis, 2006, 16:2707
[18] Cui H., Ding M., Huang D., Zhang Z., Liu H., Huang H., She Z. RSC Adv., 2017, 7:20128
[19] Vints I., Rozen S. J. Org. Chem., 2014, 79:7261
[20] Sloop J.C., Bumgardner C., Washington G., Loehle W., Sankar S., Lewis A. J. Fluorine Chem., 2006, 127:780
[21] Reid J.C., Calvin M.  J. Am. Chem. Soc., 1950, 72:2948
[22] Light R., Hauser C.  J. Org. Chem., 1960,25:538
[23] Sloop J.C., Boyle P., Fountain A.W., Gomez C., Jackson J., Pearman W., Schmidt R., WeyandJ. Appl. Sci., 2012, 2:61
[24] Park J., Brown H., Lacher J. J. Am. Chem. Soc., 1953,75:4753
[25] Sloop J.C., Churley M., Guzman A., Moseley S., Stalker S., Weyand J., Yi J. Am. J. Org. Chem., 2014,4:1
[26] Dofe V.S., Sarkate A.P., Lokwani D.K., Shinde D.B., Kathwate S.H., Gill C.H. J. Het. Chem., 2017, 54:2678
[27] Irgashev R., Safrygin A., Safrygin M., Ezhikova M., Kodess M., Röschenthaler G.V., Sosnovich V. Tetrahedron, 2015, 17:1822
[28] Sloop J.C. Rep. Org. Chem., 2013, 3:1
[29] Sloop J.C., Boyle P.D., Fountain A.W., Pearman W.F., Swann J.A. Eur. J. Org. Chem., 2011, 5:936
[30] Ameen D., Snape T. J. Synthesis, 2014, 47:141