Document Type: Original Article

Authors

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

Dyes pose significant environmental threat due to their wide application in industries. Since dyes are not properly refined through common processes and are usually accompanied by dangerous by-products, adsorption by metal nanoparticles provided by green method is among appropriate substitution methods because of high efficiency, cost-effectiveness and lack of environmental risks. The goal of this study was to investigate the performance of synthesized silver nanoparticles by the extract of Tragopogon buphthalmoides in optimum and characterized condition by UV-Vis, XRD, FESEM, TEM and FTIR techniques as a nano adsorbent in removal of Methylene Blue (MB) dye from aqueous solution. After preparation of the aforementioned nano adsorbent, relevant pHpzc was determined and MB was adsorbed with nano adsorbent in different concentrations in optimum pH and different temperatures. Langmuir, Freundlich and Temkin isotherm models were used to investigate obtained experimental data. Research has shown that MB adsorption process from Langmuir isotherm follows R2=0.9999 and increases with increasing temperature and maximum adsorption capacity (qmax) of 13-nanometer circular silver nano adsorbent has been 48.698 mg/g. Results prove that Tragopogon b. is able to reduce metal ions to metal nanoparticles and stabilize them through green method due to antioxidants properties and nanoparticles can be employed as the effective adsorbent to eliminate MB from water and industrial wastewaters.

Graphical Abstract

Keywords

Main Subjects

[1]. Bogireddy N.V.R., Kumar H.A.K. and Mandal B.K., J. Environ. Chem. Eng. 2016, 4:56

[2]. Zhang Y.R., Wang S.Q., Shen S.L., Zhao B.X., Chem. Eng. J., 2013, 233:258

[3]. Jiang X., Sun Y., Liu L., Wang S., Tian X., Chem.Eng. J., 2014, 235:151

[4]. Wang X., Liu Z., Ye X., Hu K., Zhong H., Yu J., Jin M., Guo Z., Appl. Surf. Sci., 2014, 308:82     

[5]. Robinson T., McMullan G., Marchant R., Nigam P., Bioresource Technol. , 2001, 77:247

[6]. Forgacs E., Cserháti T., Oros G., Environ. Int., 2004, 30:953

[7]. Mondal S., Environ. Eng. Sci., 2008, 25:383

[8]. Kuo W.S., Ho PH., Chemosphere, 2001, 45:77

[9]. Pearce CI., Lloyd JR., Guthrie JT., Dyesand Pigments, 2003, 58:179

[10]. Hameed B.H., El-Khaiary MI., J. Hazard. Mater., 2008, 157:344

[11]. Qu S., Huang F., Yu S., Chen G., Kong J., J. Hazard. Mater., 2008, 160:643

[12]. Hassani A., Vafaei F., Karaca S., Khataee AR., J.  Ind. Eng. Chem., 2014, 20:2615

[13]. Cheung W.H., Szeto Y.S., McKay G., Bioresource Technol., 2009, 100:1143

[14]. Jiang L., Liu P., Zhao S., Colloids Surfaces A, 2015, 470:31

[15]. Ilunga A.K., Meijboom R., J. Mol. Catal. A- Chem., 2016, 411:48

[16]. Amin N.K., Desalination, 2008, 223:152

[17]. Pavan F.A., Mazzocato A.C., Gushikem Y., Bioresource Technol., 2008, 99:3162

[18]. Gulnas O., Sahmurova A., Kama S.., Chem. Eng. J., 2011, 174:579

[19]. Machado FM., Bergmann CP., Fernandes THM., Lima EC., Royer B., Calvete T., Fagan S.B., J. Hazard. Mater., 2011, 192:1122

[20]. Ribeiro R.S., Fathy N.A., Attia A.A., Silva A.M.T., Faria J.L., Gomes H.T., Chem. Eng. J., 2012, 195:112

[21]. Song H.Y., Ko K.K., Oh I.H., Lee B.T., Eur. cells Mater., 2006, 11:58

[22]. Choi B., Lee H.H., Jin S., Chun S., Kim S.H., Nanotechnology, 2007, 18:1

[23]. Lu Y., Mei Y., Schrinner M., Ballauff M., Möller M.W., Breu, J., Macromol. Chem. Physics, 2007, 208:254

[24]. Homaunfar V., Tohidi S.H., Grigoryan G., Iran. J. Chem. Chem. Eng., 2013, 32:37

[25]. Yuan C.G., Huo C., Yu S., Gui B., Physica E, 2017, 85:19

[26]. Vidhu V.K., Philip D., Micron, 2014, 56:54

[27]. Azeez L., Lateef A., Adebisi S.A., Oyedeji A.O., Appl. Water Sci., 2018, 8:32

[28]. Jabbari R., Ghasemi N., Ramezani M., J. Nanoanalysis., 2019, 6:265

[29]. Langmuir I., J. Am. Chem. Soc., 1918, 40:1361

[30]. Freundlich H., Heller W., J. Am. Chem. Soc., 1939, 61:2228

[31]. Temkin M.J., Pyzhev V., Acta Physicochimi. USSR. 1940, 12:217

[32]. Matin T. A.B, Ghasemi N., Ghodrati K., Ramezani M., Iran. Chem. Commun., 2019, 7:637

[33]. Das S.K., Khan M.M.R., Paranthamon T., Laffir F., Guha A.K., Sekaran G., Mandal A.B., Nanoscale, 2013, 5:5549

[34]. Majumdar S.S., Das S.K., Chakravarty R., Saha T., Bandyopadhyay T.S., Guha A.K., Desalination, 2015, 251:96

[35]. Giwa A.A., Oladipo M.A., Abdulsalam K.A., J. Chem. Pharm. Res., 2015, 7:454

[36]. Nassar N.N., Ringsred A., Environ. Eng. Sci., 2012, 29:790

[37]. Ghaedi M., Roosta M., A. Ghaedi M., Ostovan A., Tyagi I., Agarwal S., Vinod Kumar Gupta, Res. Chem. Intermed., 2018, 44:2929

[38]. Tamai H., Kakii T., Hirota Y., Kumamoto T., Yasuda H., Chem. Mater., 1996, 8:454

[39]. Ghanizadeh Gh., Asgari G., Reac. Kinet. Mech. Cat., 2011, 102:127

[40]. Mckay G., Porter J.F., Prasad G.R., Water Air Soil Pollut., 1999, 114:423

[41]. Aygun A., Yenisoy-Karakas S., Duman I., Micropor. Mesopor. Mat., 2003, 66:189

[42]. Tseng R.L., Tseng S.K., Wu F.C., Colloids Surf., 2006, 279:69

[43]. Yashim M. M., Marjohan E. L., ARPN J, Eng. Appl. Sci., 2016, 11:11907