Document Type : Original Article

Authors

1 Department of Chemical Engineering, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

2 Department of Chemical Engineering, University of Sistan and Baluchestan, P.O. Box 98164-161, Zahedan, Iran

3 Ph.D. of Science in Chemical engineering, Risk Specialist of Oil and Gas Refinery Company, Iran

4 Department of Building Constructions and Structures, South Ural State University, Chelyabinsk, Russia

5 Department of Civil Engineering, Faculty of Engineering, Yasooj Branch, Islamic Azad University, Yasooj, Iran

6 Eötvös Lórànd Tudomànyegyetem Budapest (ELTE), Programtervező Informatikus, H-1053 Budapest, Egyetem tér 1-3, Hungary

7 Department of Boilers, Burners and Energy Systems; Faculty of Mechanical and Power Engineering; Wroclaw University of Science and Technology, 50-370 Wrocław, Poland

8 Department of Civil Engineering, Memorial University of Newfoundland, 230 Elizabeth Ave, St. John's, NL A1C 5S7, Canada

Abstract

Clean hydrocarbon is an alternative source of other fuels like coal and natural gas. Based on the literature, the significance of hydrocarbon production via Fischer-Tropsch synthesis (FTS) process cause to develop a new mathematical algorithm response surface methodology (RSM)/ design of experiment (DOE). The influence of important factors, like pressure, temperature and feed ratio (H2/CO) on the performance of the FTS are examined. The experiments are conducted in the range of: P = 1.9-3.75 bar, T = 523-563 K, and H2/CO ratio = 0.85-1.85 at set space velocity (2000 h-1). A second-order model is developed via RSM in terms of independent input variables to describe the CO conversion and selectivity of CO2 and C5+ as the responses. It is concluded that at low temperature and H2/CO ratio, CO2 selectivity increase significantly and C5+ selectivity decreases appreciably when pressure increases. Moreover, at low pressure an increase in temperature, reduces CO conversion. According to contour plots and analysis of variance (ANOVA), it is illustrated that the maximum CO conversion was obtained at P = 3.21 bar, T =563 K and H2/CO = 1.85 while for C5+ the maximum is observed at P = 3.67 bar, T = 529.1 K, and H2/CO = 0.91, and CO2 selectivity is minimized at P = 1.93 bar, T = 563 K and H2/CO = 1.85.  The predicted conversion and selectivity are in good accordance with experimental results which is an indication of the accuracy of RSM methodology in designing and optimizing the FT process.

Graphical Abstract

Optimization of Operating Conditions for CO Hydrogenation to Hydrocarbon via Response Surface Method

Keywords

Main Subjects

[1]. Saeidi S., Amin N.A.S., Rahimpour M.R., J. CO2 Util., 2014, 5:66

[2]. Najari S., Gróf G., Saeidi S., Int. J. Hydrog. Energy, 2019, 44:24759

[3]. Saeidi S., Najari S., Gróf G., Gallucci F., Int. J. Hydrog. Energy, 2019, 44:28586

[4]. Fazlollahi F., Saeidi S., Safdari M.S., Sarkari M., Klemeš J.J., Baxter L.L., Energy Technol., 2017, 5:1588

[5]. Fazlollahi F., Bown A., Saeidi S., Ebrahimzadeh E., Baxter L.L., Appl. Therm. Eng., 2016, 109:775

[6]. Sarkari M., Fazlollahi F., Ajamein H., Atashi H., Hecker W.C., Baxter L.L., Fuel Process. Technol., 2014, 127:163

[7]. Shahhosseini H.R., Saeidi S., Najari S., Gallucci F., Int. J. Hydrog. Energy, 2017, 42:19798

[8]. Iranshahi D., Salimi P., Pourmand Z., Saeidi S., Klemeš J.J., Chem. Eng. Process., 2017, 120:258

[9]. Fazlollahi F., Sarkari M., Zare A., Mirzaei A.A., Atashi H.,  J. Ind. Eng. Chem., 2012, 18:1223

[10]. Sarkari M., Fazlollahi F., Atashi H., Mirzaei A.A., Hosseinpour V., Fuel Process. Technol., 2012, 97:130

[11]. Saeidi S., Amiri M.T., Amin N.A.S., Rahimpour M.R., Int. J. Chem. React. Eng., 2014, 12:639

[12]. Sarkari M., Fazlollahi F., Atashi H., Int. J. Chem. React. Eng., 2012, 10:1

[13]. Atashi H., Fazlollahi F., Sarkari M., Mirzaei A.A., Shahrasb M.A., Int. J. Chem. React. Eng., 2011, 9:1

[14]. Saeidi S., Najari S., Fazlollahi F., Nikoo M.K., Sefidkon F., Klemeš J.J., Baxter L.L., Renew. Sust. Energ. Rev., 2017, 80:1292

[15]. Najari S., Saeidi S., Gróf G., Keil F.J., Rodrigues A.E., Energy Convers. Manag., 2020, 226:113550

[16]. Saeidi S., Fazlollahi F., Najari S., Iranshahi D., Klemeš J.J., Baxter L.L.,J. Ind. Eng. Chem., 2017, 49:1

[17]. Iranshahi D., Hamedi N., Nategh M., Saeedi R., Saeidi S., Chem. Eng. Technol., 2018, 41:637

[18]. Delavari S., Amin N.A.S., Chem. Eng.Trans., 2014, 39:235

[19]. Delavari S., Amin N.A.S., Energy Procedia, 2014, 61:2485

[20]. Saeidi S., Nikoo M.K., Mirvakili A., Bahrani S., Amin N.A.S., Rahimpour M.R., Rev. Chem. Eng., 2015, 31:209

[21]. Mohammadian N., Ghoreishi S., Hafeziyeh S., Saeidi S., Dionysiou D., Nanomaterials, 2018, 8:316

[22]. Saeidi S., Jouybanpour P., Mirvakilli A., Iranshahi D., Klemeš J.J., J. Clean. Prod., 2016, 136:23

[23]. Shiva M., Atashi H., Tabrizi F.F., Mirzaei A.A., Zare A., Fuel Process. Technol., 2013, 106:631

[24]. Sharma B.K., Sharma M.P., Roy S.K., Kumar S., Tendulkar S.B., Tambe S.S., Kulkarni B.D., Fuel, 1998, 77:1763

[25]. Mansouri M., Atashi H., Khalilipour M.M., Setareshenas N., Shahraki F., J. Korean Chem. Soc., 2013, 57:769

[26]. Lian B., Sun T., Song Y., Robot Comput. Integr. Manuf., 2017, 46:1

[27]. Monyanon S., Luengnaruemitchai A., Pongstabodee S., Fuel Process. Technol., 2012, 96:160

[28]. Sumesh C.S., Ramesh A., Period. Polytech. Mech. Eng., 2018, 62:196

[29]. Salehi H., Hormozi F., J. Therm. Anal. Calorim., 2019, 137:1069

[30]. Najari S., Gróf G., Saeidi S., Bihari P., Chen W.H., Energy Convers. Manag., 2020, 207:112481

[31]. Forutan H., Karimi E., Hafizi A., Rahimpour M., Keshavarz P.,  J. Ind. Eng. Chem., 2015, 21:900

[32]. Maran J.P., Priya B., Ultrason. Sonochem., 2015, 23:192

[33]. Houshmandynia S., Raked R., Golbabaei F., Chem. Methodol., 2018, 2:324

[34]. Atashi H., Razmjooei S., Khorashadizadeh M., Shiva M., Tabrizi F.F., Mousavi S.A.H.S., J. Taiwan Inst. Chem. Eng., 2015, 54:83

[35]. Calemma V., Correra S., Perego C., Pollesel P., Pellegrini L., Catal. Today, 2005, 106:282

[36]. Farias F., Silva F., Cartaxo S., Fernandes F., Sales F., Lat. Am. Appl. Res., 2007, 37:283

[37]. Shiva M., Atashi H., Mirzaei A.A., Arsalanfar M., Zare A., Fuel, 2014, 123:205

[38]. Hou W., Wu B., Yang Y., Hao Q., Tian L., Xiang H., Li Y., Fuel Process. Technol., 2008, 89:284

[39]. Adesina A.A., Appl. Catal. A. Gen., 1996, 138:345

[40]. Mirzaei A.A., Habibpour R., Kashi E., Appl. Catal. A. Gen., 2005, 296:222

[41]. Sánchez M.A., Mazzieri V.A., Sad M.R., Pieck C.L., React. Kinet. Mech. Catal., 2012, 107:127

[42]. Razmjooie A., Atashi H., Shahraki F., J. Nat. Gas. Sci. Eng., 2017, 40:72

[43]. Mirzaei A., Pourdolat A., Arsalanfar M., Atashi H., Samimi A.,  J. Ind. Eng. Chem., 2013, 19:1144

[44]. Golestan S., Mirzaei A.A., Atashi H., Fuel, 2017, 200:407

[45]. Shiva M., Atashi H., Tabrizi F.F., Mirzaei A., J. Ind. Eng. Chem., 2012, 18:1112

[46]. Arsalanfar M., Mirzaei A., Bozorgzadeh H., J. Ind. Eng. Chem., 2013, 19:478

[47]. Arsalanfar M., Mirzaei A., Bozorgzadeh H., Atashi H., J. Ind. Eng. Chem.,  2012, 18:2092

[48]. Omar W.N.N.W, Design of experiment and Response surface, 2017, file:///C:/Users/SHIMIDANKHALAGH/Downloads/Design_of_experiment_and_Response_surfac-1.pdf

[49]. Gunst RF., Technometrics, 1996, 38:284

[50]. Pandey S.K., Sachan S., Singh S.K., Mater. Sci. Energy Technol., 2019, 2:667