Document Type : Original Article

Authors

Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

Abstract

A rapid and selective dispersive solid-phase extraction technique, by the combination of Fe3O4@MWCNT-amine nanoparticles with HPLC (high-performance liquid chromatography), was expanded to detect the fluoxetine trace amounts in biological samples. The effective parameters on fluoxetine extraction were investigated by Fe3O4@MWCNT-amine, and the optimum conditions for fluoxetine extraction were sample pH 10.0, adsorption time of 28 min, and eluent (acidic methanol). Under the optimum extraction conditions, the limit of quantification (LOQ) and detection of limit (LOD) were found to be 18 and 6 µg L-1, respectively. Likewise, a linear range method with the concentration of fluoxetine in the range of 40−800 µg L-1 was applied. The analysis of several biological samples such as human plasma, urine, and tap water samples was successfully performed by applying the SPE method, which is an easy and sensitive method and an appropriate alternative for the analysis of fluoxetine.

Graphical Abstract

The Dispersive Solid-Phase Extraction of Fluoxetine Drug from Biological Samples by the Amine-Functionalized Carbon Nanotubes with HPLC Method

Keywords

Main Subjects

[1]. Latha M.S., Sowjanya B., Abbulu K., Int. J. Pharma Bio Sci., 2019, 8:2769
[2]. Wenthur C.J., Bennett M.R., Lindsley C.W., ACS Chem. Neurosci., 2014, 5:14              
[3]. Nałęcz-Jawecki G., Chemosphere., 2007, 70:29
[4]. Farhadi B., Ebrahimi M., Morsali A., Chem. Methodol., 2021,  in Press
[5]. Ibrahim M., Saeed T., Hekmatifar M., Sabetvand R., Chu Y.M., Toghraie D., J. Mol. Liq., 2021, 329:115615  
[6]. Brooks B.W., Foran C.M., Richards S.M., Weston J., Turner P.K., Stanley J.K., Solomon K.R., Slattery M., La Point T.W., Toxicol. Lett., 2003, 142:169       
[7]. Barnes K.K., Kolpin D.W., Meyer M.T., Thurman E.M., Furlong E.T., Zaugg S.D., Barber L.B., USGS OFR., 2002, 2:94
[8]. Alidadykhoh M., Pyman H., Roshanfekr H., Chem. Methodol., 2021, 5:96    
[9]. Moghimi A., Saber‐Tehrani M., Waqif‐Husain S., Mohammadhosseini M., Chin. J. Chem., 2007, 25:1859
[10]. Tarigh G.D., Shemirani F., Talanta. 2013, 115:744
[11]. Moghimi A., Abniki M., Adv. J. Chem. A. 2021, In Press       
[12]. Pourshamsi T., Amri F., Abniki M., J. Iran. Chem. Soc., 2021, 18:245
[13]. Karimi-Maleh H., Ranjbari S., Tanhaei B., Ayati A., Orooji Y., Alizadeh M., Karimi F., Salmanpour S., Rouhi J., Sillanpää M., Environ. Res., 2021, 195:110809
[14]. Karimi-Maleh H., Kumar B.G., Rajendran S., Qin J., Vadivel S., Durgalakshmi D., Gracia F., Soto-Moscoso M., Orooji Y., Karimi F., J. Mol. Liq., 2020, 314:113588       
[15]. Niazvand F., Cheshmi A., Zand M., Nasrazadani R., Kumari B., Raza A., Nasibi S., J. Compos.  Comp., 2020, 2:193
[16]. Zamania Y., Zareeinb A., Bazlic L., Nasrazadanid R., Mahammode B.P., Nasibi S., Chahardehig A. M., J. Compos.  Comp.,2020, 2:215       
[17]. Karimi-Maleh H., Sheikhshoaie M., Sheikhshoaie I., Ranjbar M., Alizadeh J., Maxakato N.W., Abbaspourrad A., New J. Chem., 2019, 43:2362
[18]. Karimi-Maleh H., Alizadeh M., Orooji Y., Karimi F., Baghayeri M., Rouhi J., Tajik S., Beitollahi H., Agarwal S., Gupta V.K., Rajendran S., Rostamnia S., Fu L., Saberi-Movahed F., Malekmohammadi S., Ind. Eng. Chem. Res., 2021, 60:816
[19] Song M.K., Cheng S., Chen H., Qin W., Nam K.W., Xu S., Yang X.Q., Bongiorno A., Lee J., Bai J., Nano Lett., 2012, 12:3483             
[20]. Aghazadeh M., Maragheh M.G., Ganjali M., Norouzi P., Rsc Adv., 2016, 6:10442
[21]. Eren T., Atar N., Yola M.L., Karimi-Maleh H., Çolak A.T., Olgun A., Ionics. 2015, 21:2193
[22]. Karimi-Maleh H., Fallah Shojaei A., Karimi F., Tabatabaeian K., Shakeri S., J. Nanostructures. 2018, 8:217
[23]. Arefazar H., Moghimi A., Orient. J. Chem., 2016, 32:2525 
[24]. Zhu H., Fu Y., Jiang R., Yao J., Liu L., Chen Y., Xiao L., Zeng G., Appl. Surf. Sci., 2013, 285:865            
[25]. Suwattanamala A., Bandis N., Tedsree K., Issro C., Mater Today proc., 2017, 4:6567
[26]. Moghimi A., J. Korean Chem. Soc., 2008, 52:140   
[27]. Abniki M., Moghimi A., Azizinejad F., J. Chin. Chem. Soc. (Taipei, Taiwan)., 2021, 68:343
[28]. Abniki M., Moghimi A., Azizinejad F., J. Serb. Chem. Soc., 2020, 85:1223
[29]. Tandekar S., Sarvanan D., Jugade R.M., Indian J. Chem. A, 2020, 59:1067
[30]. Moghimi A., J. Korean Chem. Soc., 2008, 52:155   
[31]. Safa F., Alinezhad Y., Silicon. 2020, 12:1619
[32]. Goyanes S., Rubiolo G., Salazar A., Jimeno A., Corcuera M., Mondragon I., Diamond Relat. Mater., 2007, 16:412               
[33]. Ai L., Zhang C., Liao F., Wang Y., Li M., Meng L., Jiang J., J. Hazard. Mater., 2011, 198:282 
[34]. Samadi A., Ahmadi R., Hosseini S.M., Org. Electron., 2019, 75:105405       
[35]. El-Reash Y.A., J. Environ. Chem. Eng., 2016, 4:3835            
[36]. Rajasekhar C., Redhi G.G., Bhajanthri N.K., Indian J. Chem. A, 2020, 57:887