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 So far, many efforts have been made to obtain suitable drugs and vaccines 
against the new coronavirus. Virtual screening methods are very efficient 
due to their low cost and high performance, and they are also widely used 
for designing new herbal medicines. Datura and Hyoscyamus, from the 
Solanaceae family, have many medicinal properties. This research 
identified potential compounds from the plants Hyoscyamus niger and 
Datura stramonium using molecular docking and dynamics studies. 
These plants have alkaloids, glycosides, terpenoids, steroids, flavonoids, 
tannins, and saponins. Many of them have attracted significant interest 
due to their variety of pharmacological activities and may have the 
potential to cure the new Coronavirus. Therefore, 93 known compounds 
were investigated, and then five compounds with the lowest binding 
energies were chosen for docking study. Additionally, atomic molecular 
dynamics simulation was performed to discover the dynamic behaviour 
of the main protease (Mpro): ligand complexes. Fraxtin indicated 
potential activity to inhibit the main protease (Mpro), but further in vitro, 
in vivo, and clinical trial studies are needed to confirm this claim. 
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G R A P H I C A L   A B S T R A C T  

 
 

Introduction 

In late December 2019, the spread of Coronavirus 

disease across the globe caused a serious crisis 

[1,2]. The new coronavirus is seemingly highly 

pathogenic, contagious, and infectious. In COVID-

19, most cases show signs like pyrexia, dry cough, 

tiredness, sore throat, runny nose, stuffy nose, loss 

of taste or smell, diarrhea, and digestive tract 

symptoms, while in a few patients it primarily 

targets the human respiratory system and causes 

severe illness [3-6]. This disease has affected the 

whole world, and by March 2023, it has infected 

more than 759 million people and caused more 

than 6 million deaths [7]. Several vaccines against 

COVID-19 have been quickly developed, such as 

the inactivated virus COVID-19 vaccine and mRNA 

vaccines, which have shown effectiveness against 

the spread of SARS-CoV-2 [8]. However, the fast-

evolving variants of the new coronavirus, such as 

alpha, beta, gamma, theta, kappa, delta, delta-plus, 

and Omicron, may make these vaccines less 

effective [9,10]. Thus, we require more potential 

drugs with better results and fewer side effects to 

save human society from severely pathogenic 

Covid-19 strains [11-13]. Targeting viral particles 

can inhibit SARS-CoV-2 infection, making it the 

best therapeutic approach [14]. The new 

coronavirus is a single-stranded RNA with a 

symmetric helical nucleocapsid that contains four 

major structural proteins: spike, nucleocapsid, 

membrane, and coat. Furthermore, this new virus 

has non-structural proteins such as the main 

protease of the coronavirus (3CLpro), papain-like 

(PLpro), and RNA-dependent RNA polymerase 

(RdRp) [15,16]. The 3CLpro is one of the main 

proteins that play a vital role in coronavirus 

replication [17,18]. Since there are no human 

proteases with a main protease homologue, it is an 

ideal target for drug design because the inhibitors 

are less toxicity to humans [19]. In this field, 

computer-assisted drug design can be used for 

compounds (FDA-approved drugs or natural 

products) that have already proven to be safe and 

effective in humans [20,21]. Computational 

methods have already provided antiviral 

compounds against influenza [22], Ebola [23-25], 

Zika [26-28], Dengue [29-32], and CoVs [33-36] 

viruses. Natural products are one of the important 

sources of medicine for the treatment of various 

illnesses due to their low toxicity and high 

biological potency [37,38]. Also, natural bioactive 

molecules derived from plants can be used for the 

potential treatment of novel coronavirus disease 
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due to their immunomodulatory, anti-

inflammatory, and antioxidant properties [39,40]. 

The use of natural medicines to treat inflammation 

in coronavirus disease has reduced the disease 

progression and the duration of hospitalization 

[41,42]. The Solanaceae family contains many 

important pharmaceutical plants, with 98 genera 

and more than 2700 species [43]. Datura 

stramonium and Hyoscyamus niger are 

widespread annual plants from the Solanaceae 

family [44]. These plants are widely distributed in 

South America, Central and North America, Africa, 

Europe, and Asia [45]. They contain some 

compounds such as alkaloids, glycosides, 

terpenoids, steroids, flavonoids, tannins, 

saponins, and anthraquinones compounds [46]. 

They have shown pharmacological effects such as: 

antioxidant, antidepressant, anti-inflammatory, 

antioxidant, antimicrobial, anti-asthmatic, anti-

diabetic, anticholinergic, hypotensive, 

hepatoprotective, and immune-boosting 

properties, etc. [47-49]. To investigate the 

antiviral effect of natural compounds against the 

coronavirus 2 main protease (Mpro), we have 

focused on the natural compounds using a 

computational approach from Datura stramonium 

and Hyoscyamus niger. We have performed a 

screening study on the 93 different known 

compounds of both plants, and it is found that five 

ligands (Cleomiscosin A, Cholestane-3,5-diol 5-

acetate (3beta,5alpha), Fraxetin, Hyoscyamilactol, 

and Umckalin) show high interaction with the 

Mpro. The effect of the elected compounds on the 

Mpro structure was investigated via molecular 

dynamics (MD) studies and molecular docking. 

Materials and methods  

Receptor and ligands selection 

In this study, the compounds previously identified 

in two plants, Datura stramonium and 

Hyoscyamus niger, were used [44,46]. These 

ligands were tested against the Mpro [3CLpro (3-

chymotrypsin-like protease)] target protein of 

new coronavirus, which was obtained from the 

protein data bank (PDB ID: 6LU7). The three-

dimensional crystal structure of this new 

coronavirus is highly significant for viral 

replication and, due to its differences from human 

proteases; it could be an excellent target for 

inhibitory research. The Mpro of the new 

coronaviruses was detected using the X-ray 

diffraction technique. 

Receptor and ligands preparation 

With the Discovery Studio 4.5 software, the 

inhibitor and water molecules were deleted from 

Mpro. Using AutoDock Tools 1.5.6, protein 

optimization was done by adding Kollman partial 

charges and polar hydrogen atoms. The sizes of 

the grid box and receptor with a space of 1 Å were 

chosen based on the dimensions of x, y, and z 

coordinates during the docking study. To 

download the structure of the required ligands, we 

used the PubChem database. Furthermore, to 

convert the structures into pdb format, we used 

Biovia Discovery Studio. The PubChem IDs of the 

ligands obtained in this study are: Cleomiscosin A 

(CID: 442510), Cholestane-3,5-diol, 5-acetate, 

(3beta,5alpha) (CID: 91691425), Fraxetin (CID: 

5273569), Hyoscyamilactol (CID: 100942617), 

and Umckalin (CID: 5316862). The ligands were 

prepared by removing water, adding Gasteiger 

charges, and setting the number of torsion atoms.  

Molecular docking  

To observe the binding affinity and protein-ligand 

docking platform, molecular docking is used to 

distinguish and evaluate protein-ligand 

interactions [50]. The binding poses of the ligands 

in the active site of covid-19 main protease (6LU7) 

were created with the Auto dock tool (ADT). In 

this study, the Auto Dock Vina was used to study 

the 63 compounds in binding to the Mpro. For 

each ligand, 20 conformations were obtained, and 

then the top 5 ligands with the lowest binding 

energy were chosen for flexible molecular 

docking. Auto Dock Tools, discovery studio and 

LigPlot+ were used to visualize the docking 

findings. 

Molecular dynamics simulations 

The dynamical behavior of 3CLpro and 3CLpro: 

ligand complexes were explored using all atom 
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MD simulations as implemented in GROMACS 

2019.3 software. Also, The VMD 2.9 program was 

used to visualize the MD path [51,52]. The initial 

coordinates of 3CLpro, ligands, and 3CLpro:ligand 

complexes were calculated by the outputs of the 

molecular docking method. The AMBER force field 

gave all bond and non-bond potential energy 

function parameters for all species. The items 

required for the MD simulation of the ligands were 

prepared using the Antechamber program [53]. 

Next, GROMACS software was used to convert the 

output files of Antechamber to topology and 

coordinate compatible files [54]. The restrained 

electrostatic potential (RESP) approach was used 

to assign partial charges to ligands and proteins 

[55]. Short-range non-bonded interactions were 

modeled using the 12-6 Lennard-Jones potential 

with a cutoff of 12 Å. The Particle mesh Ewald 

method was applied to calculate long-range 

electrostatic interactions, and periodic boundary 

conditions were applied in all directions. The 

3CLpro:ligand complex was placed in the center of 

a cubic solvation box filled with TIP3P water 

model, and a solvation shell of 10 Å was applied. 

The 3CLpro has a negative charge of 4, so 4 sodium 

ions (Na+) were added to the simulation box to 

neutralize the system. Moreover, salt (Na+Cl-) with 

a concentration of 0.145 M was used to more 

accurately simulate physiological conditions [56]. 

To reduce thermal noise in the dissolved 

dendrimers and potential energies, the steepest 

descent minimization algorithm was used 

following the conjugate gradient method. The first 

phase of the equilibrium simulation was used for 

500 ps under the canonical (NVT) ensemble to 

reach the simulation system at 310 K. Next, an 

isothermal-isobaric equilibrium (NPT) simulation 

was performed for 1 ns to maintain isotropic 

pressure at 1 bar. Production MD runs were 

conducted for 50 ns using the NPT ensemble, and 

the release of position restraints was performed 

after completing two equilibration steps. 

Results and Discussion 

Molecular docking 

Docking is applicable for understanding the 

interactions between the receptor and the ligand, 

as well as predicting ligand-protein affinity [57]. 

Blocking the proteases His41 and Cys145 helps 

reduce virus replication and its impact on the host 

[58]. Therefore, the main protease 3CLpro of the 

novel coronavirus was targeted to identify 

potential compounds that block the His41 and 

Cys145 catalytic sites. The Cleomiscosin A-Mpro 

complex exhibited the lowest binding energy of -

8.2 kcal/mol and formed four hydrogen bonds 

with SER144, LEU141, CYS145, GLY143, and π-

alkyl interaction with PRO168 and MET165, and 

five Van der Waals interactions with ASN142, 

GLN189, THR190, ASP187, and ARG188 (Figure 

1). 

Fraxetin-Mpro complex indicated the least 

binding energy of -6.2 kcal/mol. It is characterized 

by six H-bonding interactions with GLY143, 

CYS145, SER144, LEU141, HIS163, and GLU166, 

two Pi-donor bonds with CYS145, GLN189, one 

Donor-Donor bond with CYS145 and ten Van der 

Waals interactions with GLN189, MET165, 

HIS172, HIS163, PHE140, LEU141, SER144, 

ASN142, LEU27, and HIS41 (Figure 2). 

Hyoscyamilactol-Mpro complex have minimum 

binding energy of -7.3 kcal/mol. Four 

conventional hydrogen bonds were seen at 

GLU166, LEU167, GLY143, and CYS145. GLU166, 

GLN189, HIS164, and ASN142 were seen bonding 

via carbon hydrogen bond. Nine residues GLN189, 

MET165, HIS41, THR26, THR25, ASN142, LEU27, 

CYS145, and LEU167 were observed by Van der 

Waals bond (Figure 3). 

Cholestane-3,5-diol, 5-acetate, (3beta,5alpha)- 

Mpro complex gave the minimum binding energy 

of -6.5 kcal/mol. SER144, LEU141, and CYS145 

were creating conventional hydrogen bonds. 

Other interactions were observed with HIS163 

and PRO168 residues like Alkyl and Pi-alkyl. 

GLY143, MET49, HIS41, GLN189, LEU167, 

THR190, GLU166, MET165, PHE140, ASN142, and 

SER144 were forming a Van der Waals bond with 

the ligand (Figure 4). 
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Figure 1: Interaction of Cleomiscosin A with Mpro: (A) LigPlot+, (B) Auto Dock tools, and (C) 2D and 3D 

schematic of Discovery studio  
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Figure 2: Interaction of Fraxetin with Mpro: (A) LigPlot+, (B) Auto Dock tools, and (C) 3D and 2D schematic of 

Discovery studio  
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(C) 

Figure 3: Interaction of Hyoscyamilactol with Mpro: (A) LigPlot+, (B) Auto Dock tools, and (C) 3D and 2D 

schematic of Discovery studio 
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(A) 

 

(B) 

   

(C) 

Figure 4: Interaction of Cholestane-3,5-diol, 5-acetate, (3beta,5alpha) with Mpro: (A) LigPlot+, (B) Auto Dock 

tools, and (C) 3D and 2D schematic of Discovery studio  

Umckalin [7-hydroxy-5,6-dimethoxychromen-2-

one]- Mpro complex showed a binding score of -

5.7 Kcal/mol. Three sorts of bond formation were 

seen in the docked complex. CYS145, GLY143, 

SER144, LEU141, and GLU166 were forming 

Hydrogen bonds with Umckalin. GLN189, MET49, 

and ASN142 formed Pi-donor bond with the 

ligand. Van der Waals bond formation was 

observed in GLN189, MET49, LEU27, HIS41, 
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ASN142, PHE140, HIS163, and MET165 (Figure 5, 

Table 1). 

 (A) 

 

 

 

(B) 

   

(C) 

Figure 5: Interaction of Umckalin with Mpro: (A) LigPlot+, (B) Auto Dock Tools, and (C) 3D and 2D schematic of 

Discovery studio  
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Table 1: Interactions and binding energiesof top 5 conformatons of ligands with Mpro  

 Compound 
Binding energy 

Kcal/ mol 

No. of hydrogen 

bonds 

Hydrogen bond 

interaction 

1 Cleomiscosin A -8.2 4 
LEU141, GLY143 

SER144,  CYS145 

2 Hyoscyamilactol -7.3 4 
CYS145, GLY143, 

LEU167, GLU166 

3 
Cholestane-3,5-diol, 5-acetate 

(3beta,5alpha) 
-6.5 3 

CYS145, SER144, 

LEU141 

4 Fraxetin -6.2 6 

SER144, CYS145, 

LEU141, HIS163, 

GLY143, GLU166 

5 Umckalin -5.7 5 

GLY143, GLU166, 

SER144, CYS145, 

LEU141 

 

Molecular dynamics (MD) simulations of Mpro-

ligand complexes 

Molecular dynamics simulations provide us with 

an in-depth look at the structure of the protein 

using a number of analysis tools such as radius of 

gyration (Rg), centre of mass (COM) separation 

distance between protein and ligands, protein-

ligand interaction energies and intermolecular 

hydrogen bonds, radial distribution functions 

(RDF), solvent accessible surface area (SASA), 

root-mean-square fluctuation (RMSF), and root-

mean-square deviation (RMSD). 

Equilibration and relaxation of protein-ligand 

complexes 

The average distance between the corresponding 

atoms of the protein backbone through MD 

simulation run time is referred to as RMSD. 

According to its definition, RMSD can be used as an 

indicator of reaching stability and equilibrium 

during the MD trajectory. Thus, RMSD was chosen 

as the first criterion to check whether the 

simulation time is sufficient for sampling. Figure 6 

shows the RMSD of atomic positions of 3CLpro 

backbone calculated against the initial structure of 

Mpro-Cleomiscosin A, Mpro-Fraxetin, and Mpro-

Hyoscyamilactol complexes. The RMSD plot of 

native Mpro is further represented for 

comparison. The time series show that the RMSD 

levels off to almost constant values after about 35 

ns of molecular dynamics simulations, indicating 

that the Mpro structure is well equilibrated and 

useful information is provided because of the long 

simulation time on the protein-ligand separation 

distances, nature of interactions between ligand 

molecules and protein, microstructure of protein, 

etc. The mean quantity of root-mean-square 

deviation is determined to be about 0.30 ± 0.02, 

0.22 ± 0.03, 0.23 ± 0.02, and 0.20 ± 0.02 nm for 

Mpro, Mpro-Cleomiscosin A, Mpro-Fraxetin, and 

Mpro-Hyoscyamilactol complexes. This shows 

that the structure of Mpro is very stable in the 

Mpro-ligand complexes. In this study, to 

equilibrate all simulated systems, statistics were 

obtained from the last 10 ns of the MD simulation. 

Structural characterization of Mpro-ligand 

complexes 

Figure 7 shows the RMSF of protein residues after 

fitting to a reference frame (i.e. the time-averaged 

position of each residue). This parameter 

determines the flexibility of the protein's building 

blocks and also identifies the regions of the 

protein structure that fluctuate the most or the 

least from their mean structure. The general trend 

of the RMSF plots for all three complexes is similar 

to the parent protein. Few residue regions of 

Cleomiscosin A-Mpro show higher fluctuations 

compared with Mpro (0-2, 97, 100, 118, 154, 214, 

and 255) while some other residues of protein are 

more fluctuated including 47, 76, 137-142, 167-

170, 188-196, 305, and 306 residues. Fluctuations 

of the RMSF plot of Fraxetin-Mpro are generally 

lower than the reference protein, and this 
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difference is very evident in the cases of 112-146, 

167-171, and 187-203 residue regions. In the case 

of Hyoscyamilactol-Mpro complex, the only 

residues that show more fluctuations after 

interaction with the ligand molecule are 1-3 and 

118. The average quantity of root-mean-square 

fluctuation is determined to be about 0.16, 0.15, 

0.13, and 0.14 nm for free Mpro, Cleomiscosin A-

Mpro, Fraxetin-Mpro, and Hyoscyamilactol-Mpro, 

respectively. Thus, binding of these ligands 

reduces the fluctuation of protein building blocks.

 

Figure 6: Atom-positional RMSD of the Mpro backbone designated for Mpro, Cleomiscosin A-Mpro, Fraxetin-

Mpro, and Hyoscyamilactol-Mpro complexes  

 

Figure 7: Protein per residue RMSF during production MD run time evaluated for Mpro, Cleomiscosin A-Mpro, 

Fraxetin-Mpro, and Hyoscyamilactol-Mpro complexes  

To determine the preferential binding sites of the 

ligands within the protein, the equilibrium 

structures of the protein-ligand complexes at the 

end of the molecular dynamics (MD) simulations, 

as well as the amino acid residues distributed 

within 5 Å of the ligand molecules, are represented 

in Figures 8 to 10. Figure 8 demonstrates that 

Cleomiscosin A is surrounded by residues THR45, 

THR26, LEU27, MET165, THR25, HIS41, CYS44, 

MET49, CYS145, HIS164, LEU167, VAL186, 

ASP187, SER46, ARG188, GLN189, THR190, and 

GLN192. From Figure 9, it can be observed that in 

the equilibrated structure of Fraxetin-Mpro, 

amino acids HIS41, THR45, THR25, SER46, GLU47, 

CYS44, ASP48, MET49, LEU50, ASN51, PRO52, 

TYR54, ARG188, GLN189, MET165, VAL186, 

ASP187, and HIS164 surround the ligand. 
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Figure 8: Representation of the equilibrium conformation of Cleomiscosin A-Mpro complex and amino acids that 

interact with Cleomiscosin A molecule  

 
Figure 9: Representation of the equilibrium conformation of Fraxetin-Mpro complex and amino acids that 

interact with Fraxetin molecule  

Finally, Hyoscyamilactol is interacting with amino 

acids GLU166, THR25, THR26, HIS41, VAL42, 

CYS145, SER46, GLN189 MET49, ASN142, 

GLY143, LEU27, HIS163, HIS164, MET165, and 

THR24 (Figure 10). Thus, all three ligands adopt 

almost the same binding site in Mpro. 

 

Figure 10: Representation of the equilibrium conformation of Hyoscyamilactol-Mpro complex and amino acids 

that interact with Hyoscyamilactol molecule  

As mentioned earlier, blocking the HIS41 and 

CYS145 proteases helps to decrease virus 

replication and its burden on the host. Figure 11 

presented the interaction distances between 

ligand molecules and Mpro extracted using RDF 

plots of HIS41 and CYS145 to the ligand molecules. 
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The probability of distribution of B atoms around 

A ones as reference atoms was evaluated by radial 

distribution functions. The gA–B(r) is represented 

by Equation (1): 

𝑔𝐴−𝐵(𝑟) =
(

𝑛𝐵

4𝜋𝑟2∆𝑟
)

(
𝑁𝐵

𝑁 )
                                    (1) 

where,  nB is the number of B atoms distributed 

around the A atoms in a spherical shell with a Δr 

thickness. NB represents the total number of B 

atoms in an amorphous cell. It can be observed 

from Figure 11(a) that Fraxetin-HIS41 RDF shows 

the highest peak, which is mainly distributed at a 

distance of 0.35-0.52 nm of HIS41 residue of Mpro. 

This sharp peak indicates that this ligand 

preserves an almost constant distance from HIS41 

during the MD run time. The height of RDF profile 

of Cleomiscosin A is almost half of that of Fraxetin. 

Furthermore, in the case of Cleomiscosin A, we 

observe a distribution zone that starts from 0.30 

nm and extends up to 0.60 nm, implying the 

fluctuation of Cleomiscosin A-HIS41 interaction 

distance at different MD frames. The weakest and 

broadest peak is related to Hyoscyamilactol 

molecule, which indicates the variable distance 

between the HIS41 and this ligand. Radial pair 

distribution profiles of CYS145 amino acid to the 

ligand molecules (Figure 11(b)) are similar for all 

three ligands, indicating that Cleomiscosin A, 

Fraxetin, and Hyoscyamilactol molecules are 

distributed at a distance of 0.50-0.90 nm, 0.55-

0.90 nm, and 0.51-0.80 nm from CYS145, 

respectively. Overall, we conclude that Fraxetin 

can act as an inhibitor of both HIS41 and CYS145 

amino acids. 

 

Figure 11: Radial pair distribution profiles of (a) HIS41 and (b) CYS145 amino acids to the ligand molecules  

The radius of gyration (Rg) for a protein with an N 

atom is calculated by Equation (2): 

𝑅𝑔
2 =

1

𝑀
∑[𝑚𝑘(𝑟𝑘 − 𝑟𝑚𝑒𝑎𝑛)2]

𝑁

𝑘=1

                                                                                                                 (2) 
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Where, M is the total mass of protein, N is the 

number of atoms of protein, mk is the mass of the 

kth atom, rmean corresponds to the centre of the 

protein, and (rk − rmean) is the distance of the kth 

atom from the centre. The reason behind choosing 

Rg as an analysis tool is that it enables us to assess 

the protein compactness so that a stably folded 

protein preserves a relatively constant value of Rg 

while the Rg value of an unfolded protein will 

changes during the MD trajectory [59]. Figure 12 

indicates RG as a function of simulation time in 

unloaded Mpro and also cleomyscosin A-Mpro, 

Fraxetin-Mpro, and Hyoscyamilactol-Mpro 

complexes. The average value of RG for free MPRO, 

Cleomiscosin A-MPRO, Fracastin-mpro, and 

Hyoscyamilactol-mproS Complexes over the last 

10 ns of MD trajectory was approximately 2.21 ± 

0.01, 2.26 ± 0.01, 2.21 ± 0.01 nm. It also seems that 

the radius of gyration value of Mpro remains 

almost constant upon interaction with Fraxetin 

and Hyoscyamilactol while Cleomiscosin A causes 

a slight increase of Rg of Mpro.

 

Figure 12: Radius of gyration (Rg) of unloaded Mpro and also Cleomiscosin A-Mpro, Fraxetin-Mpro, and 

Hyoscyamilactol-Mpro complexes 

Hydrogen bond analysis 

One of the most important non-covalent 

interactions in biological systems is hydrogen 

bonds, which create a dipole- dipole interaction 

between the hydrogen of an X―H group (X: an 

electronegative atom) with one or more 

electronegative atoms [60]. The peptide backbone 

is made by α helices and β sheets by forming a 

hydrogen bond between the amine atom and the 

oxygen atom of the carbonyl group. Therefore, 

hydrogen bonds play an important role in building 

the secondary or tertiary structures of proteins. 

Along the sequence of the same strand in α-helix, 

hydrogen N-H four residues give hydrogen bond 

with carbonyl oxygen. Also, hydrogen bonds are 

created between the appropriate functional 

groups of various strands of protein in a β-sheet. 

Therefore, it could be mentioned that the most 

important interactions in biological systems that 

create the stability of host-guest complexes are 

hydrogen bonds. Using the gmx analysis, we 

investigated the structure of protein-ligand 

complexes and the contribution of hydrogen 

bonds in the stability of these complexes. The 

number of hydrogen bonds formed during 50 ns of 

MD simulation between Mpro and substrate 

molecules is depicted in Figure 13. It can also be 

seen in Figure 13 that during the simulation time, 

the intermolecular hydrogen bonds are broken 

several times, especially in the Cleomiscosin A-

Mpro complex. 
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Figure 13: Formation of intermolecular hydrogen bonds (a) Cleomiscosin A, (b) Fraxetin, and (c) 

Hyoscyamilactol molecules and Mpro  

Table 2: The most important hydrogen bond donor and acceptor groups in Cleomiscosin A-Mpro, Fraxetin-Mpro, 

and Hyoscyamilactol-Mpro complexes 

Cleomiscosin A-Mpro Fraxetin-Mpro Hyoscyamilactol-Mpro 

Donor―Hydrogen Acceptor Donor―Hydrogen Acceptor Donor―Hydrogen Acceptor 

HIS41(N―H) 
Cleomiscosin 

AO1 
ASN142(N―H) FraxetinO2 THR24(O―H) HydroxytropaneO6 

HIS41(N―H) 
Cleomiscosin 

AO7 
ASN142(N―H) FraxetinO5 THR26(N―H) HydroxytropaneO1 

SER46(O―H) 
Cleomiscosin 

AO8 
GLY143(N―H) FraxetinO2 THR26(N―H) HydroxytropaneO3 

ASN142(N―H) 
Cleomiscosin 

AO8 
GLY143(N―H) FraxetinO4 HIS41(N―H) HydroxytropaneO1 

GLY143(N―H) 
Cleomiscosin 

AO5 
GLY143(N―H) FraxetinO5 HIS41(N―H) HydroxytropaneO3 

GLY143(N―H) 
Cleomiscosin 

AO6 
GLU166(N―H) FraxetinO1 SER46(O―H) HydroxytropaneO1 

SER144(N―H) 
Cleomiscosin 

AO5 
GLU166(N―H) FraxetinO2 SER46(O―H) HydroxytropaneO2 

CYS145(N―H) 
Cleomiscosin 

AO5 
GLU166(N―H) FraxetinO3 SER46(O―H) HydroxytropaneO3 

GLN189(N―H) 
Cleomiscosin 

AO2 
GLU166(N―H) FraxetinO4 SER46(O―H) HydroxytropaneO6 

GLN189(N―H) 
Cleomiscosin 

AO3 
GLU166(N―H) FraxetinO5 ASN142(N―H) HydroxytropaneO2 

GLN189(N―H) 
Cleomiscosin 

AO4 
ARG188(N―H) FraxetinO4 ASN142(N―H) HydroxytropaneO4 
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GLN189(N―H) 
Cleomiscosin 

AO8 
GLN189(N―H) FraxetinO3 ASN142(N―H) HydroxytropaneO6 

Cleomiscosin 

A(O5―H9) 
HIS41O GLN189(N―H) FraxetinO1 GLY143(N―H) HydroxytropaneO2 

Cleomiscosin A 

(O5―H9) 
SER144OG GLN189(N―H) FraxetinO2 GLY143(N―H) HydroxytropaneO3 

Cleomiscosin 

A(O8―H18) 
ASN141OD1 GLN189(N―H) FraxetinO4 CYS145(N―H) HydroxytropaneO3 

Cleomiscosin 

A(O8―H18) 
GLU166OE1 THR190(N―H) FraxetinO3 GLN189(N―H) HydroxytropaneO1 

Cleomiscosin 

A(O8―H18) 
GLN189OE1 GLN192(N―H) FraxetinO2 GLN189(N―H) HydroxytropaneO2 

  GLN192(N―H) FraxetinO3 GLN189(N―H) HydroxytropaneO3 

  Fraxetin(O3―H4) HIS41ND1 GLN189(N―H) HydroxytropaneO5 

  Fraxetin(O3―H4) ASP48O Hyoscyamilactol(O3―H27) THR25OG1 

  Fraxetin(O3―H4) MET49O Hyoscyamilactol(O3―H27) THR26O 

  Fraxetin(O3―H4) TYR54OH Hyoscyamilactol(O3―H27) HIS41ND1 

  Fraxetin(O3―H4) HIS164O Hyoscyamilactol(O3―H27) GLN189OE1 

  Fraxetin(O3―H4) GLU166OE1 Hyoscyamilactol(O6―H42) THR26OG1 

  Fraxetin(O3―H4) GLU166OE2 Hyoscyamilactol(O6―H42) GLU166OE1 

  Fraxetin(O3―H4) GLU166O Hyoscyamilactol(O6―H42) GLU166OE2 

  Fraxetin(O3―H4) ASP187O Hyoscyamilactol(O6―H42) GLU166O 

  Fraxetin(O3―H4) ARG188N   

  Fraxetin(O3―H4) ARG188O   

  Fraxetin(O3―H4) THR190O   

  Fraxetin(O4―H5) THR45O   

  Fraxetin (O4―H5) ASP48O   

  Fraxetin(O4―H5) ASN142OD1   

  Fraxetin(O4―H5) ASN142O   

  Fraxetin(O4―H5) GLU166OE1   

  Fraxetin(O4―H5) GLU166OE2   

  Fraxetin(O4―H5) GLU166O   

  Fraxetin(O4―H5) ASP187O   

  Fraxetin(O4―H5) ARG188O   

  Fraxetin(O4―H5) GLN192NE2   

 

Table 2 presents the important donor and 

acceptor groups of interacting species. According 

to Figure 13, Fraxetin forms the most number of 

hydrogen bonds with Mpro. The N―H groups of 

HIS41, SER46, ASN142, GLY143, SER144, and 

GLN189 residues act as hydrogen bond donors 

that interact with oxygens of Cleomiscosin A. On 

the other hand, the O5―H9 and O8―H18 groups of 

Cleomiscosin A form intermolecular hydrogen 

bonds with oxygen atoms of HIS41, SER144, 

ASN141, GLU166, and GLN189 residues. The N―H 

groups of ASN142, GLY143, GLU166, ARG188, 
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GLN189, THR190, and GLN192 are the most 

important donor groups of protein in Fraxetin-

Mpro complex that contribute in hydrogen 

bonding interactions with oxygen atoms of the 

ligand. Furthermore, hydroxyl groups of Fraxetin 

are involved in hydrogen bond interaction with 

HIS41, ASP48, MET49, TYR54, HIS164, ASP187, 

GLN192, THR190, THR45, GLU166, ASN142, and 

ARG188 amino acids. Finally, amine groups of 

THR26, HIS41, ASN142, GLY143, CYS145, and 

GLN189 residues as well as hydroxyl groups of 

THR24 and SER46 form hydrogen bonds with the 

oxygens of Hyoscyamilactol. The O3―H27 and 

O6―H42 groups of Hyoscyamilactol interact as 

donors with oxygen atoms of THR25, THR26, 

HIS41, GLN189, THR26, and GLU166 of Mpro as 

acceptors. The average number of hydrogen bonds 

formed between Mpro and ligands is calculated to 

be 0.3, 1.1, and 0.6 for Cleomiscosin A, Fraxetin, 

and Hyoscyamilactol, respectively.  

Solvent accessible surface area 

The solvation behaviour of a protein is a key factor 

to consider in evaluation of protein-ligand 

interactions. The SASA analysis illustrates how 

many water molecules are accessible by protein 

amino acids. Therefore, Solvent accessible surface 

area analysis was performed to evaluate the Mpro 

ability to do chemistry with solvent and ligand 

molecules (Figure 14). The average SASA amounts 

of the protein for the last 10 ns of in this molecular 

dynamics simulations were evaluated 152 ± 2.5, 

153 ± 2.1, 148 ± 1.6, and 149 ± 2.1 nm2 for Mpro, 

Cleomiscosin A-Mpro, Fraxetin-Mpro, and 

Hyoscyamilactol-Mpro, respectively. This shows 

that protein-ligand interactions do not affect the 

densification of Mpro, significantly.

 

Figure 14: Solvent accessible surface area (SASA) as a function of simulation time for free Mpro and protein in 

Cleomiscosin A-Mpro, Fraxetin-Mpro, and Hyoscyamilactol-Mpro complexes  

The estimated solvation free energies from per 

exposed surface area are calculated to be -25.0 ± 

4.8 kJ.mol-1.nm-2 for free Mpro and -30.7 ± 4.6, -

31.5 ± 4.6, and -32.3 ± 5.1 kJ.mol-1.nm-2 for 

Cleomiscosin A-Mpro, Fraxetin-Mpro, and 

Hyoscyamilactol-Mpro complexes, respectively. 

Figure 15 illustrates the average area over the 

trajectory per residue for the simulated systems. 

It can be seen that all simulated systems generally 

follow a similar trend. Thus, after complex 

formation, the accessibility of protein residues to 

the solvent does not change.
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Figure 15: Solvent accessible surface area (SASA) as a function of simulation time for free Mpro and protein in 

Cleomiscosin A-Mpro, Fraxetin-Mpro, and Hyoscyamilactol-Mpro complexes  

Protein-ligand interaction energies 

The value of the protein-ligand short-range non-

bonded interaction energies was calculated to 

quantify the strength of the interaction between 

these two species. The average short-range 

Coulombic, Lennard-Jones (LJ), and total 

interaction energies are given in Table 3. The LJ 

short-range interaction energies show the 

following trend: Fraxetin > Cleomiscosin A > 

Hyoscyamilactol. However, the highest value of 

Coulomb energy belongs to the Hyoscyamilactol-

Mpro interactions (-33.1 kJ.mol-1). The strength of 

Coulomb energies for Cleomiscosin A-Mpro and 

Fraxetin-Mpro is almost the same. The calculated 

protein-ligand interaction energies indicate that 

Fraxetin makes an extremely more stable complex 

with Mpro than the other two ligands. The 

obtained result is consistent with the hydrogen 

bond analysis. 

Table 3: The average values of protein-ligand interaction energies (kJ.mol-1) during the MD simulations 

Complex Coulomb energy LJ energy Total energy 

Cleomiscosin A-Mpro -23.4 -130.2 -153.6 

Fraxetin-Mpro -25.4 -183.5 -208.9 

Hyoscyamilactol-Mpro -33.4 -119.1 -152.5 

 

Using computational methods to find antiviral 

drugs is one of the most powerful techniques to 

fight this disease. Natural compounds have been 

widely investigated. In a previous study, Elena 

Campione et al reported the moleculars docking of 

Umckalin and Fraxetin on the 3CL protease (ID: 

6LU7), bovine lactoferrin (ID: 1BLF), spike 

glycoprotein and catalytic subunit of the RdRp 

polymerase (ID: 7BV2). The Interaction Energy of 

Umckalin and Fraxetin on the 3CL protease was -

5.7 and -6.9 kcal/mol, respectively. They 

investigated only compounds with energies 

higher than -7.5 kcal/mol through molecular 

dynamics simulations [61]. Abha et al showed that 

Cleomiscosin A has binding capability with cluster 

of differentiation molecules (CDs), toll-like 

receptors (TLR-4) and and inducible nitric oxide 

synthase (iNOS) protein [62]. Jehoshaphat 

Oppong Mensah et al researched about interaction 

of Cleomiscosin A with 6WNP Main Protease of 

SARS-CoV-2 and they reported the MD simulations 

of this compound [63]. Also, Gédéon N. Bongo et al 

stated that the Cleomiscosin A has good binding 

energy with 6LU7. They noted this compound has 

higher binding affinity (-8.2) with 3CLpro than 

Azithromycin but they have not investigated the 

MD simulations properties of this compound [64]. 

Olfa Tabbene et al investigated the effects of 12 -

hydroxydaturametelin B and Daturametelin B in 

these plants on interleukin-6“IL-6”,tumor necrosis 

factor-α 

 “TNF-α”, their receptors (TNFR1 and IL-6R) and 
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both TNF-TNFR1 and IL-6-IL-6R complexes. The 

infection caused by Covid-19 can increase the 

levels of cytokines and increase the severity of the 

disease [65]. Anupam Bishayee et al stated that 

12-deoxywithastramonolide, Daturalactone and 

Daturilin bind with lectin-like oxidized low-

density lipoprotein receptor-1 (LOX-1), nuclear 

factor-κB (NF-κB), inducible nitric oxide 

synthases (iNOS), cyclooxygenase-1(COX-1) and 

COX-2. These compounds have the anti-

inflammatory effects [66]. Other studies were 

reported about the other compounds in different 

plants [67-74]. There have been no studies on 

Hyoscyamilactol and Cholestane-3,5-diol 5-

acetate (3beta,5alpha) interaction with the 3CL 

main protease of SARS-CoV-2. In this study, the 

antiviral potency of Cleomiscosin A, Cholestane-

3,5-diol 5-acetate (3beta,5alpha), Fraxetin, 

Hyoscyamilactol and Umckalin against 3CLpro of 

Sars-CoV-2 were investigated by molecular 

docking analysis and molecular dynamics 

simulations. 

Conclusion 

For confronting the Sars-CoV-2 Virus many 

studies are targeting to find antiviral treatments. 

Antiviral potency of Hyoscyamus niger and Datura 

stramonium compounds against 3CLpro of Sars-

CoV-2 were investigated by molecular docking 

analysis. Five compounds have been indicated the 

least binding energies and Fraxetin resulted the 

best potency against of new Coronavirus Mpro (-

6.2 Kcal/mol) due to greater numbers of hydrogen 

bindings. 

All molecular dynamics (MD) simulations were 

used to explore the dynamical aspects of protein-

ligand complexes’ interactions. The average RMSD 

values are calculated to be approximately 0.30 ± 

0.02, 0.22 ± 0.03, 0.23 ± 0.02, and 0.20 ± 0.02 nm 

for Mpro, Mpro-Cleomiscosin A, Mpro-Fraxetin, 

and Mpro-Hyoscyamilactol, respectively, showing 

that the structure of Mpro is very stable in the 

Mpro-ligand complexes. The mean quantity of 

RMSF was obtained to be about 0.16, 0.15, 0.13, 

and 0.14 nm for free Mpro, Cleomiscosin A-Mpro, 

Fraxetin-Mpro, and Hyoscyamilactol-Mpro, 

respectively. Thus, the binding of these ligands 

reduces the fluctuation of protein building blocks. 

The height and sharpness of radial pair 

distribution functions (RDF) peaks suggest that 

Fraxetin can act as an inhibitor of both HIS41 and 

CYS145 amino acids. The average number of 

hydrogen bonds formed between Mpro and 

ligands is calculated to be 0.3, 1.1, and 0.6 for 

Cleomiscosin A, Fraxetin, and Hyoscyamilactol, 

respectively. The average short-range Coulombic, 

Lennard-Jones (LJ), and total interaction energies 

of Cleomiscosin A-Mpro (-23.4, -130.2, and -153.6 

kJ.mol-1, respectively), Fraxetin-Mpro (-25.4, -

183.5, and -208.9 kJ.mol-1, respectively), and 

Hyoscyamilactol-Mpro (-33.4, -119.1, and -152.5 

kJ.mol-1, respectively) show that Fraxetin makes 

an extremely more stable complex with Mpro in 

comparison Cleomiscosin A and Hyoscyamilactol.  
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