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Water pollution is a major global problem that requires ongoing 
evaluation and revision of water resource policy . Water pollution 
is the major cause of death and diseases, resulting in deaths of 
more than 14,000 people daily. Genetic algorithm-partial least 
square (GA-PLS), Kernel partial least square (GA-KPLS) and 
Levenberg-Marquardt artificial neural network (L-M ANN) 
techniques were used to investigate the correlation between the 
retention time (RT) and descriptors for 150 organic contaminants 
in natural water and wastewater which obtained by gas 
chromatography coupled to high-resolution time-of-flight mass 
spectrometry (GC-TOF MS). The L-M ANN model showed a better 
performance in comparison with other models, indicating that L-M 
ANN model can be used as an alternative modeling tool for 
quantitative structure–retention relationship (QSRR) studies. 
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Introduction 

Water pollution is the contamination of the water bodies including lakes, rivers, oceans, and 

groundwater. Water pollution occurs when pollutants are discharged directly or indirectly into the 

water bodies without adequate treatment to remove the harmful compounds. Water pollution 

affects plants and organisms living in the water bodies. In almost all cases, not only it has a negative 

effect on the individual species and populations, but also it damages the natural biological 

communities [1,2]. 

   An estimated 700 million Indians have no access to a proper toilet, and 1,000 Indian children die 

because of diarrheal sickness every day. 90% of cities in China  suffers from water pollution, and 

around 500 million people do not have access to a safe drinking water [2,3]. In addition to the acute 

problems of water pollution in developing countries, the developed countries struggle with the 

pollution problems as well. In the most recent national report on water quality in the United States, 

45 % of the assessed stream miles, 47 % of the assessed lake acres, and 32 % of the assessed bay 

and estuarine square miles were classified as pollution [3]. 

atural phenomena such as volcanoes, algae blooms, storms, and earthquakes also cause major 

changes in water quality and the ecological status of water Surface water and groundwater have 

often been studied and managed as separate resources, although they are interrelated. Surface 

water seeps through the soil and becomes groundwater. Conversely, groundwater can also feed 
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surface water sources. Sources of surface water pollution are generally grouped into two categories 

based on their origin [4]. 

Contaminants in water may include organic and inorganic substances. Some organic water 

pollutants are: 

Insecticides and herbicides, a huge range of organohalide and other chemicals Bacteria, often is 

from sewage or livestock operations Food processing waste, including pathogens Tree and brush 

debris from logging operations VOCs (Volatile Organic Compounds, industrial solvents) from 

improper storage [5, 6]. Some inorganic water pollutants include: Heavy metals including acid mine 

drainage Acidity caused by industrial discharges (especially sulfur dioxide from power plants) 

Chemical waste as industrial by products Fertilizers, in runoff from agriculture including nitrates 

and phosphates Silt in surface runoff from construction sites, logging, slash and burn practices or 

land clearing sites [7]. Organic pollution occurs when an excess of organic matter, such as manure 

or sewage enters the water. When organic pollution increases in a pond, the number of 

decomposers will increase. As the aquatic organisms die, they are broken down by decomposers, 

leading to further depletion of the oxygen. A type of organic pollution can occur when inorganic 

pollutants such as nitrogen and phosphates accumulate in aquatic ecosystems. High level of these 

nutrients cause an overgrowth of plants and algae. As the plants and algae die, they become organic 

material in the water. The enormous decay of this plant matter, in turn, lowers the oxygen level. 

The process of rapid plant growth followed by increased activity by decomposers and a depletion of 

the oxygen level is called eutrophication [5, 6].  

There are several important reasons why social scientists should examine the causes of organic 

water pollution.  First, it is largely the result of human activities. The industrial activities that 

contribute to organic water pollution include manufacturing of glass, pesticides, medicines, plastics, 

ceramics, textiles, metals, and paper [8].  Some other activities that contribute to water pollution 

include food processing facilities with inadequate disposal facilities and the dispersing of water 

used to cool coke during steel production. The chemicals and byproducts of these manufacturing 

and industrial processes often end up as waste and are disposed of by being dumped into rivers, 

lakes, and streams [9].  

Second, water pollution has been associated with many other environmental problems. For 

instance, many chemicals that dumped into waterways are not only highly toxic but also take a long 

time to decompose. Consequently, there is a shift in the pH of water. The pH shift causes certain 

plants and animals to die off while allowing others to reproduce unchecked, thereby reducing 

biodiversity. Some water pollutants also stimulate oxygen consumption by plants, algae, and 
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bacteria. This process reduces levels of dissolved oxygen creating a situation of chronic “stress” that 

lowers the body weight of aquatic animals and makes them less able to compete for food and 

habitat. It also creates a situation that is toxic to some fish and aquatic invertebrates, which die due 

to lack of oxygen [10]. 

Third, water pollution from industrial and manufacturing activity has serious health effects in 

humans [11, 12]. The toxic chemicals found in water supplies affect people through the process of 

“bioaccumulation” or the building up of toxins in the fatty tissue of mammals. The long-term effects 

of bioaccumulation in adults include cancer, blood disorders, immunity suppression, and 

spontaneous abortions. The buildup of these pollutants has been linked to birth defects.   

The United States Environmental Protection Agency (EPA) monitors and analyzes organic 

pollutants in water. The EPA has established a list of a "dirty dozen" particularly widespread and 

persistent organic pollutants (POPs). Part of the EPA's mandate is to identify where these 

pollutants occur in water resources and to contain or mitigate POPs. 

The POPs include intentionally produced chemicals such as pesticides as well as industry or 

combustion by-products. The dirty dozen are aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, 

hexachlorobenzene, mirex, toxaphene, PCBs, dioxins and furans.  

EPA laboratories in Cincinnati, Ohio and Athens, Georgia investigated analytical methods to analyze 

organic pollutants in water based on gas chromatography separation of the pollutants and mass 

spectrometer identification and quantification. The research results were published as the EPA's 

test methods 624 and 625 for the standard analysis of organic pollutants in municipal and 

industrial effluent [13].  

Gas chromatography separates organic pollutants for further analysis. The researcher injects a 

sample into the gas chromatography instrument. The instrument heats the sample to a gas and 

injects it into the gas chromatography tube or column. As the sample travels the length of the 

column, the different organic molecules condense and liquefy and then vaporize as a gas again. As a 

liquid, the molecules stick to the column, but as a gas, they travel through the column quickly. 

Different pollutants have different ratios of gas to liquid, so they each travel through the column at 

different speeds [14]. The separated pollutants are then analyzed by mass spectrometry. A mass 

spectrometer ionizes a sample and shoots it through an electric field. The electric field bends the 

path (trajectory) of lighter molecules more than that of heavy molecules. The sample strikes a 

detector at a certain position based on its mass. This method identifies and quantifies organic 

pollutants in water after they have been separated by gas chromatography. The combination of gas 
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chromatography and mass spectrometry give researchers complete information on the type of 

organic pollutants in a sample and the concentration of each pollutant in the sample. 

Most of these methods are focused on target analysis with quantitative purposes and their scope 

rarely exceeds several tens of analytes, being quite unusual to find analytical methods for the 

determination of more than 100 organic pollutants. In the last decade there has been a notable 

increase in the use of full spectrum acquisition techniques, such as time-of-flight mass spectrometry 

(TOF MS), which allows acquiring huge amount of chemical information on the sample in a single 

analysis [15, 16]. This facilitates widening the number of analytes that can be searched in a single 

experiment, with the additional advantage that data can be re-examined at any time to search for 

other compounds not included in the first screening, without the need of additional analysis. 

TOFMS and hybrid quadrupole-TOFMS have been successfully applied for screening purposes in 

combination with gas chromatography (GC) or liquid-chromatography (LC) in different applied 

fields, like environmental analysis, food safety or toxicology. This analyzer provides the selectivity 

and sensitivity required for wide-scope screening, as it combines high full-spectral sensitivity with 

high mass resolution. Accurate mass data obtained can be processed in both “post-target” and/or 

non-target way, which gives high versatility to the instrument which allows the user to tackle an 

analytical problem in different ways, depending on the aim of the analysis [15-17]. 

Prediction of physico–chemical properties of materials based on their molecular structure has been 

one of the wishes of scientists and engineers for a long time. One of the best methods which have 

been applied for this purpose is quantitative structure–property relationships (QSRR). QSRR 

analysis is now a well established and highly respected technique to correlate chromategraphic 

retention time of a compound with its molecular structure, through a variety of descriptors. The 

basic strategy of QSRR analysis is to find optimum quantitative relationships, which can then be 

used for the prediction of the retention from molecular structures [18, 19]. Once a reliable relation 

has been obtained, it is possible to use it to predict that retention for other structures not yet 

measured or even not yet prepared. QSRR on the retention time have been reported for different 

types of organic compounds [20-22]. 

The application of this technique usually requires variable selection for building well-fitted models. 

Nowadays, the genetic algorithm method (GA) is well known as an interesting and more widely 

used variable selection method. GA is a stochastic method that solves the optimization problems 

defined by fitness criteria, applying the evolution hypothesis of Darwin and different genetic 

functions, i.e. crossover and mutation [23, 24]. 
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In this work, we aim to construct a QSRR model of the retention time of organic contaminants in 

natural water and wastewater and their theoretically derived descriptors. After the variables were 

selected, the linear multivariate regressions (e.g. the partial least squares (PLS)) as well as the non-

linear regressions (e.g. the kernel PLS (KPLS), Levenberg- Marquardt artificial neural network (L-M 

ANN)) were utilized to construct the linear and non-linear QSRR models. The sets of variables, 

which provide the best-fitted models for PLS and KPLS methods, were selected with the help of the 

genetic algorithm.  

Materials and methods  

Equipment 

A Pentium IV personal computer (CPU at 3.06 GHz) with the Windows XP operating system was 

used. The geometry optimization was performed with HyperChem (Version 7.0 Hypercube, Inc). 

For the calculation of the molecular descriptors, the Dragon 2.1 software was used. The GA-PLS, GA-

KPLS, L-M ANN, cross validation and the other calculations were performed in the MATLAB 

(Version 7.0, Math works, Inc). 

Data set and descriptor generation 

The data set used in this study, is the retention time (RT) of organic contaminants in natural water 

and wastewater (a total number of 150 molecules), which obtained by gas chromatography time-of-

flight mass spectrometry (GC-TOF) were taken from the literature [25] is shown in Table 1 and 

Table 2. The constituents of organic pollutants in natural water and wastewater includes: PAHs, 

octyl/nonyl phenols, PCBs, PBDEs and a notable number of pesticides, such as insecticides 

(organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and 

chloroacetanilides), fungicides and several relevant metabolites. Water samples of different types 

and origin were collected from different sites of the Castell  َ n province (Spain). Concretely, two 

surface water (SW) (Villarreal and Burriana), two ground water (GW) (Almassora and Castell  َ n), 

and two effluent water samples (EWW) from a wastewater treatment plant (WWTP) of Castell  َ n 

were collected. The chemical structure of the 150 studied molecules were drawn with the 

Hyperchem software and saved with the HIN extension. To optimize the geometry of the studied 

molecules, the AM1 geometrical optimization was applied. The DRAGON software was used to 

calculate the descriptors in this research and a total of 1497 molecular descriptors, belonging to 18 

different types of the theoretical descriptors, were calculated for each molecule. 

Instrumentation 
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GC instrumentation consisted of an Agilent 6890N GC system (Paloalto, CA, USA), equipped with an 

Agilent 7683 autosampler, coupled to a time-of-flight mass spectrometer, GCT (Waters Corporation, 

Manchester, UK), operating in electron ionization (EI) mode. The GC separation was performed 

using a fused silica HP-5MS capillary column of 30m×0.25mm i.d. and a film thickness of 0.25  m 

(J&W Scientific, Folson, CA, USA). The oven temperature was programmed as follows: 90 ◦C (1min); 

5 ◦C/min to 300 ◦C (2min). Splitless injections of 1  L sample were carried out. Helium was used as 

carrier gas at 1mL/min. The interface and source temperatures were both set to 250 ◦C and a 

solvent delay of 3min was selected. TOF MS was operated at 1 spectrum/s acquiring the mass range 

m/z 50–650 and using a multi-channel plate voltage of 2800V. TOF-MS resolution was about 8500 

(FWHM) atm/z 614. Heptacosa, used for the daily mass calibration as well as lockmass, was 

injected via syringe in the reference reservoir at 30 ◦C. The m/z ion monitored was 218.9856. The 

application manager TargetLynx, a module of MassLynx software, was used to process data 

obtained from standards and samples for target compounds. The application manager ChromaLynx, 

also a module of MassLynx software, was used to investigate the presence of non-target compounds 

in samples. Library searching was performed using the commercial NIST library. 

Data pretreatment 

To decrease the redundancy existing in the descriptor data matrix, those descriptors which 

contribute either no information or whose information content is redundant with other descriptors 

present in the pool. Then, the remaining descriptors were collected in an n   m data matrix (D), 

where n = 150 and m=1019 are the number of the compounds and the descriptors, respectively. 

These descriptors were employed to generate the models with the GA-PLS and GA-KPLS program. 

Genetic algorithm 

Genetic algorithm is a problem-solving method that uses generic rules such as reproduction, 

crossover and mutation to build pseudo organisms that are then selected based on a fitness 

criterion to survive and pass information on to the next generation [26]. GA uses a binary bit string 

representation as the coding technique for a given problem; the presence or absence of a descriptor 

in a chromosome is coded by 1 or 0. A string is composed of several genes that represent a specific 

characteristic to be studied. In the present case, a string is composed of 561 genes representing the 

presence or absence of a descriptor. By encoding various descriptors with bit strings, called 

chromosomes, the initial population was created randomly. The population size was varied 

between 50 and 300 for different GA runs. For a typical run, the evolution of the generation was 

stopped when 90% of the generations had taken the same fitness [27, 28]. In this paper, size of the 
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population is 30 chromosomes, the probability of initial variable selection is 5:V (V is the number of 

independent variables), crossover is multi Point, the probability of crossover is 0.5, mutation is 

multi Point, the probability of mutation is 0.01 and the number of evolution generations is 1000. 

For each set of data, 5000 runs were performed. 

Nonlinear model 

Artificial neural network 

A three-layer back propagation artificial neural network ANN with a sigmoid transfer function was 

used in the investigation of feature sets. The descriptors from the training set were used for the 

model generation whereas the descriptors from the validation set were used to stop the 

overtraining of network. And the descriptors from the validation set were used to verify the 

predictivity of the model. Before training the networks, the input and output values were 

normalized with auto-scaling of all data [29, 30]. To compare the results, the same number of 

hidden layer nodes was used for the ANN models from all other feature sets of each database. The 

goal of training the network is to minimize the output errors by changing the weights between the 

layers. 

1,,  nijnnij WFW                                                                                                                                                (1) 

In this, ijW  is the change in the weight factor for each network node, α is the momentum factor, 

and F is a weight update function, which indicates how weights are changed during the learning 

process. The weights of hidden layer were optimized using the Levenberg-Marquardt algorithm, a 

second derivative optimization method [31]. 

Levenberg-Marquardt Algorithm 

 In Levenberg-Marquardt algorithm, the update function, Fn, was calculated using equations (2-4). 

00 gF                                                                                                                                                                          (2) 

eJg T                                                                                                                                                                           (3) 

eJIJJF TT

n  1][                                                                                                                                 (4) 

Where g is gradient, and J is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights, and e is a vector of network errors. The parameter µ is multiplied by 

some factor (λ) whenever a step would result in an increased e and when a step reduces e, µ is 

divided by λ [32, 33]. 
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Results and discussion 

Linear model  

Results of the GA-PLS model 

The best model is selected based on the highest square correlation coefficient leave-group-out cross 

validation (R2), the least root mean squares error (RMSE) and relative error (RE) of prediction. 

These parameters are probably the most popular measure of how well a model fits the data. The 

best GA-PLS model contains sixteen selected descriptors in seven latent variables space. These 

descriptors were obtained constitutional descriptors (mean electrotopological state (Ms)), 2D 

autocorrelations (Broto-Moreau autocorrelation of a topological structure - lag 5/weighted by 

atomic masses (ATS5m), Broto-Moreau autocorrelation of a topological structure - lag 5 / weighted 

by atomic van der Waals volumes (ATS5v), Broto-Moreau autocorrelation of a topological structure 

- lag 5 / weighted by atomic Sanderson electronegativities (ATS5e), Moran autocorrelation - lag 

3/weighted by atomic polarizabilities (MATS3p), Geary autocorrelation - lag 5/weighted by atomic 

Sanderson electronegativities (GATS5e) and Geary autocorrelation - lag 5 / weighted by atomic 

polarizabilities (GATS5p)), geometrical descriptors (spherosity (SPH)), absolute eigenvalue sum on 

geometry matrix (SEig)), 3D-MoRSE descriptors (3D-MoRSE - signal 11/weighted by atomic masses 

(Mor11m), 3D-MoRSE - signal 29 / weighted by atomic masses (Mor29m) and 3D-MoRSE - signal 

12/weighted by atomic van der Waals volumes (Mor12v)), GETAWAY descriptors (leverage-

weighted autocorrelation of lag 5 / unweighted (HATS5u)), atom-centred fragments (CR3X (C-011) 

and R--CX..X (C-035)) and charge descriptors (total negative charge (Qneg)). The R2 and RMSE for 

training and validation sets were (0.809, 0.740) and (0.599, 1.055), respectively. The predicted 

values of RT are plotted against the experimental values for training and test sets in Figure 1. For 

this in general, the number of components (latent variables) is less than the number of independent 

variables in PLS analysis. The PLS model uses higher number of descriptors that allow the model to 

extract better structural information from descriptors to result in a lower prediction error.  
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Figure 1. Plots of predicted retention time against the experimental values by GA-PLS model  

Nonlinear model 

Results of the GA-KPLS model 

PLS is useful in situations where the number of explanatory variables exceeds the number of 

observations and/or a high level of multicollinearity among those variables is assumed. Motivated 

by this fact we will provide a kernel PLS algorithm for construction of nonlinear regression models 

in possibly high-dimensional feature spaces. PLS has proven to be useful in situations when the 

number of observed variables (N) is significantly greater than the number of observations (n) and 

high multicollinearity among the variables exists. This situation when N ≥ n is common in 

chemometrics and gave rise to the modification of classical principal component analysis (PCA) and 

linear PLS methods to their kernel variants. However, rather than assuming a nonlinear 

transformation into a feature space of arbitrary dimensionality the authors attempted to reduce 

computational complexity in the input space. Motivated by these works we propose a more general 

nonlinear kernel PLS algorithm. 

In this paper a radial basis kernel function, k(x,y)= exp(||x-y||2/c), was selected as the kernel 

function with ( 2rmc  ) where r is a constant that can be determined by considering the process 

to be predicted (here r was set to be 1), m is the dimension of the input space and 
2  is the 

variance of the data [34]. It means that the value of c depends on the system under the study. The 

13 descriptors in 5 latent variables space chosen by GA-KPLS feature selection methods were 
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contained. These descriptors were obtained topological descriptors (Schultz Molecular Topological 

Index (MTI) (SMTI), Harary H index (Har), average eccentricity (AECC) and eccentric connectivity 

index (CSI)), 2D autocorrelations (Broto-Moreau autocorrelation of a topological structure - lag 

5/weighted by atomic van der Waals volumes (ATS5v) and Moran autocorrelation - lag 3/weighted 

by atomic polarizabilities (MATS3p)), Burden eigenvalues (lowest eigenvalue n. 1 of Burden 

matrix/weighted by atomic Sanderson electronegativities (BELe1), geometrical descriptors 

(average span R (SPAM)), 3D-MoRSE descriptors (3D-MoRSE - signal 03 / weighted by atomic 

masses (Mor03m), 3D-MoRSE - signal 19 / weighted by atomic masses (Mor19m), 3D-MoRSE - 

signal 23 / weighted by atomic masses (Mor23m), 3D-MoRSE - signal 17 / weighted by atomic van 

der Waals volumes (Mor17v)), molecular properties (Squared Moriguchi octanol-water partition 

coeff. (logP^2) (MLOGP2)). The R2 and RMSE for training and test sets were (0.781, 0.716) and 

(0.649, 1.293), respectively. Figure 2 shows the plot of the GA-KPLS predicted versus experimental 

values for RT of all of the molecules in the data set. It can be seen from these results that statistical 

results for GA-PLS model are superior to GA-KPLS method.  
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Figure 2. Plot of predicted RT obtained by GA-KPLS against the experimental values  

Results of the L-M ANN model 

The networks were generated using descriptors appearing in the GA-PLS model as inputs. For ANN 

generation, dataset was separated into three groups: calibration, prediction and test sets. Before 

training, the input and output values were normalized between 0 and 1. Number of neurons in the 
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hidden layer, learning rate and momentum were optimized. A feed-forward neural network with 

back-propagation algorithm was constructed to model the retention relationship [35]. This method 

is an iterative algorithm that allows training of multilayer networks. The algorithm looks for the 

minimum of the error function. In this way, the training process tries to diminish the difference 

between the outputs of the network and the expected values. Of course, there are some other 

approaches such as Levenberg Marquardt algorithm, gradient descent with variable learning rate 

back-propagation and resilient back-propagation. These networks are different in weight update 

functions and can converge faster than steepest decent method [36]. But this paper has not focused 

on investigating the role of weight update functions or calculation time in artificial neural networks. 

Our network has nine input layer, four hidden layer and one output layer. A bias unit with a 

constant activation of unity is connected to each unit in the hidden and output layers. Once the best 

topology of the network is obtained and the convergence criterion is reached, a leave-4- out cross-

validation procedure is also employed to more validate the performances of the resulted networks. 

To evaluate the performance of the ANN, RMSE of the calibration was used. The number of neurons 

in the hidden layer with the minimum value of RMSE was selected as the optimum number. 

Learning rate and momentum were optimized in a similar way. It was realized that the RMSE for 

the training and test sets are minimum when four neurons were selected in the hidden layer. The R2 

and RMSE for calibration, prediction and test sets were (0.945, 0.929, 0.861) and (0.165, 0.353, 

0.522), respectively. Inspection of the results reveals a higher R2 and lowers other values parameter 

for the test set compared with their counterparts for other models. Plots of predicted RT versus 

experimental RT values by L-M ANN for calibration, prediction and test sets are shown in Figure 3a, 

3b, respectively.  
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Figure 3. Plot of predicted RT obtained by L-M ANN against the experimental values (a) calibration and 
prediction sets of molecules and (b) for validation set 

The residuals (predicted RT− experimental RT) obtained by the L-M ANN modeling versus the 

experimental RT values are shown in Figure 4a, 4b. As the calculated residuals are distributed on 

both sides of the zero line, one may conclude that there is no systematic error in the development of 

the neural network.  
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Figure 4. Plot of residuals obtained by L-M ANN against the experimental RT values (a) training set of 
molecules and (b) for test set 

The values of experimental, calculated and RMSE are shown in Table 1 and Table 2 for training and 

test sets which obtained by L-M ANN model. The Q2 of training and test sets for the GA-PLS and GA-

KPLS models are (0.802, 0.734) and (0.775, 0.712) respectively which would be compared with the 

values of (0.943, 0.924, 0.853), respectively, for L-M ANN model. Comparison between these values 

and other statistical parameters reveals the superiority of the L-M ANN model over other models. 

The key strength of neural networks, unlike regression analysis, is their ability to flexible mapping 

of the selected features by manipulating their functional dependence implicitly. The statistical 

parameters reveal the high predictive ability of L-M ANN model.  

 
Table 1. The data set, structure, the corresponding observed, calculate and root mean square error values 
retention time of training set for L-M ANN 

 

No Name Molecular formula RTExp RTCal RMSE 

 Calibration Set    

1 Dichlorvos C4H7Cl2O4P 7.85 7.41 0.047 
2 Mevinphos C7H13O6P 12.08 12.45 0.039 
3 Acenaphthene C12H10 13.25 12.06 0.125 
4 Methacrifos C7H13O5PS 13.8 13.05 0.079 
5 Heptenophos C9H12ClO4P 15.45 15.97 0.055 
6 Fluorene C13H10 15.47 14.89 0.062 
7 Tecnazene C6HCl4NO2 15.95 15.33 0.065 
8 Diphenylamine C12H11N 16.33 17.05 0.076 
9 Chlorpropham C10H12ClNO2 17.08 18.63 0.164 

10 Terbumeton desethyl C8H15N5O 17.18 15.91 0.134 



Mehrdad Shahpar & Sharmin Esmaeilpoor                                          P a g e  | 15                                                                  
 

11 Atrazine desethyl C6H10ClN5 17.28 15.79 0.157 
12 Trifluraline C13H16F3N3O4 17.79 16.46 0.141 
13 Hexachlorobenzene C6Cl6 18.3 17.08 0.129 
14 Dimethoate C5H12NO3PS2 18.68 20.22 0.162 
15 Atrazine C8H14ClN5 19.2 17.80 0.147 
16 Lindane C6H6Cl6 19.39 19.84 0.048 
17 Terbumeton C10H19N5O 19.47 18.57 0.095 
18 Phenanthrene C14H10 19.72 18.62 0.116 
19 Fonofos C10H15OPS2 19.8 20.64 0.089 
20 Propyzamide C12H11Cl2NO 19.92 20.12 0.021 
21 Diazinon C12H21N2O3PS 20.37 22.17 0.190 
22 Terbacil C9H13ClN2O2 20.54 19.84 0.074 
23 Endosulfan ether C9H6Cl6O 21.04 21.90 0.091 
24 Pirimicarb C11H18N4O2 21.35 23.24 0.200 
25 PCB 28 C12H7Cl3 21.69 22.04 0.037 
26 Chlorpyrifos methyl C7H7Cl3NO3PS 21.95 23.62 0.176 
27 Parathion methyl C8H10NO5PS 22.05 23.15 0.116 
28 Chlozolinate C13H11Cl2NO5 22.08 21.55 0.056 
29 Alachlor C14H20ClNO2 22.39 23.40 0.107 
30 Fenchlorphos C8H8Cl3O3PS 22.62 21.09 0.161 
31 Metalaxyl C15H21NO4 22.63 24.69 0.218 
32 Methiocarb sulfone C11H15NO4S 22.92 21.53 0.147 
33 Methiocarb C11H15NO2S 23.14 24.42 0.135 
34 Fenitrothion C9H12NO5PS 23.17 23.70 0.055 
35 Pirimiphos methyl C11H20N3O3PS 23.32 21.74 0.166 
36 Dichlofluanide C9H11Cl2FN2O2S2 23.42 21.22 0.232 
37 Metolachlor C15H22ClNO2 23.79 22.78 0.106 
38 Fenthion C10H15O3PS2 23.92 26.17 0.238 
39 Chlorpyrifos C9H11Cl3NO3PS 24 26.16 0.228 
40 Isodrin C12H8Cl6 24.62 23.28 0.141 
41 Cyprodinil C14H15N3 24.95 27.24 0.241 
42 Heptachlor epoxide B C10H5Cl7O 25.09 25.99 0.095 
43 Fluoranthene C16H10 25.2 22.96 0.236 
44 Heptachlor epoxide A C10H5Cl7O 25.25 25.75 0.053 
45 Chlorfenvinphos C12H14Cl3O4P 25.57 25.02 0.058 
46 Isofenphos C15H24NO4PS 25.6 24.14 0.154 
47 Procymidone C13H11Cl2NO2 25.85 24.21 0.173 
48 Methidathion C6H11N2O4PS3 26.12 23.91 0.233 
49 Fenoxycarb C17H19NO4 26.37 23.77 0.274 

50  -Endosulfan C9H6Cl6O3S 26.42 27.95 0.161 
51 PCB 77 C12H6Cl4 27.32 24.69 0.278 
52 Dieldrin C12H8Cl6O 27.39 29.46 0.218 
53 PCB 81 C12H6Cl4 27.69 26.87 0.086 
54 Buprofezin C16H23N3OS 27.87 29.11 0.131 
55 Bupimirate C13H24N4O3S 28.07 30.70 0.277 

56  -Endosulfan C9H6Cl6O3S 28.52 26.56 0.207 
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57 BDE 28 C12H7OBr3 28.68 26.75 0.204 

58 p, p -DDD C14H10Cl4 28.97 27.89 0.114 
59 Oxadixyl C14H18N2O4 29.15 26.41 0.289 
60 PCB 153 C12H4Cl6 29.47 28.63 0.089 
61 PCB 123 C12H5Cl5 29.59 26.79 0.295 

62 p, p -DDT C14H9Cl5 30.3 32.08 0.188 
63 PCB 126 C12H5Cl5 30.75 33.82 0.324 
64 Tebuconazole C16H22ClN3O 30.8 28.40 0.253 
65 PCB 156 C12H4Cl6 31.45 32.22 0.081 
66 Benzo(a)anthracene C18H12 31.84 29.50 0.247 
67 Phosmet C11H12NO4PS2 32.08 30.86 0.129 
68 PCB 157 C12H4Cl6 32.24 29.89 0.248 
69 Bifenthrin C23H22ClF3O2 32.39 30.60 0.189 
70 PCB 167 C12H4Cl6 32.44 31.77 0.071 
71 PCB 180 C12H3Cl7 32.84 30.44 0.253 
72 BDE 47 C12H6OBr4 32.92 31.22 0.180 
73 Tetradifon C12H6Cl4O2S 33.07 35.90 0.298 
74 PCB 169 C12H4Cl6 33.55 32.82 0.077 
75 Mirex C10Cl12 33.62 33.70 0.008 
76 Fenarimol C17H12Cl2N2O 34.39 31.59 0.295 
77 PCB 189 C12H3Cl7 34.82 31.49 0.351 
78 Permethrin II C21H20Cl2O3 35.9 33.46 0.258 
79 Coumaphos C14H16ClO5PS 36.02 38.50 0.262 
80 Benzo(b)fluoranthene C20H12 36.55 39.32 0.292 
81 Cypermethrin I C22H19Cl2NO3 37.42 35.08 0.247 
82 Cypermethrin II C22H19Cl2NO3 37.62 41.32 0.390 
83 Cypermethrin IV C22H19Cl2NO3 37.79 39.39 0.169 
84 Benzo(a)pyrene C20H12 37.81 40.62 0.296 
85 Fenvalerate I C25H22ClNO3 39.15 38.99 0.017 
86 BDE 154 C12H4OBr6 39.17 39.14 0.003 

87  -Fluvalinate II C26H22ClF3N2O3 39.7 38.01 0.178 
88 BDE 153 C12H4OBr6 40.3 36.76 0.373 
89 Indeno(1,2,3,cd)pyrene C22H12 41.89 39.90 0.210 
90 Dibenzo(a,h)anthracene C22H14 42.07 39.43 0.278 

 Prediction Set    
91 Methamidophos C2H8NO2PS 7.35 8.40 0.191 
92 Pentachlorobenzene C6HCl5 14.09 14.40 0.056 
93 Omethoate C5H12NO4PS 15.72 17.36 0.300 
94 Atrazine desisopropyl C5H8ClN5 16.98 18.01 0.187 
95 Phorate C7H17O2PS3 17.97 17.55 0.077 
96 4-n-Octylphenol C14H22O 19.44 20.71 0.232 
97 Anthracene C14H10 19.92 19.71 0.038 
98 4-n-Nonylphenol C15H24O 21.57 24.47 0.530 
99 Carbaryl C12H11NO2 22.22 22.71 0.089 

100 Terbutryn C10H19N5S 23.09 21.31 0.326 
101 Malathion C10H19O6PS2 23.67 25.29 0.296 
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102 Pirimiphos ethyl C13H24N3O3PS 24.9 25.62 0.131 
103 Thiabendazole C10H7N3S 25.3 24.17 0.206 
104 Quinalphos C12H15N2O3PS 25.65 27.73 0.381 
105 Pyrene C16H10 26.15 23.98 0.396 
106 Imazalil C14H14Cl2N2O 27.2 31.04 0.700 

107 p, p -DDE C14H8Cl4 27.45 26.13 0.241 
108 PCB 118 C12H5Cl5 28.64 26.93 0.312 
109 Ethion C9H22O4P2S4 29.24 30.98 0.318 
110 PCB 138 C12H4Cl6 30.45 27.41 0.556 
111 Iprodione C13H13Cl2N3O3 31.89 31.38 0.094 
112 BDE 71 C12H6OBr4 32.4 31.39 0.185 
113 BDE 66 C12H6OBr4 33.47 30.50 0.543 
114 Pyrazophos C14H20N3O5PS 34.74 32.08 0.485 
115 BDE 100 C12H5OBr5 35.95 36.04 0.016 
116 BDE 99 C12H5OBr5 36.8 40.64 0.700 
117 BDE 85 C12H5OBr5 38.35 42.86 0.824 

118  -Fluvalinate I C26H22ClF3N2O3 39.57 35.84 0.682 
119 BDE 138  C12H4OBr6 41.85 45.27 0.625 
120 Benzo(g,h,l)perylene C22H12 42.69 47.47 0.873 

 

Table 2 . The data set, structure, observed, calculate and RMSE values RT for test set by L-M ANN 

 

No Name Molecular formula RTExp RTCal RMSE 

1 Naphthalene C10H8 6.5 7.66 0.212 
2 Acenaphthylene C12H8 12.43 12.52 0.016 
3 Molinate C9H17NOS 15.38 14.83 0.101 
4 4-t-Octylphenol C14H22O 15.99 18.37 0.434 
5 Terbuthylazine desethyl C7H12ClN5 17.68 17.59 0.016 
6 Simazine C7H12ClN5 18.95 15.64 0.604 
7 Terbuthylazine C9H16ClN5 19.77 23.80 0.735 
8 Etrimfos C10H17N2O4PS 20.92 16.50 0.807 
9 Fosfamidon C10H19ClNO5P 21.78 25.09 0.604 

10 Heptachlor C10H5Cl7 22.2 26.02 0.697 
11 PCB 52 C12H6Cl4 23.05 28.83 1.056 
12 Aldrin C12H8Cl6 23.52 21.05 0.451 
13 Parathion ethyl C10H14NO5PS 24.02 22.75 0.231 
14 Penconazole C13H15Cl2N3 25.25 29.31 0.742 
15 Hexythiazox C17H21ClN2O2S 26.04 31.87 1.064 
16 Profenofos C11H15BrClO3PS 27.35 26.30 0.193 
17 PCB 105 C12H5Cl5 28.55 26.14 0.441 
18 PCB 114 C12H5Cl5 29.04 31.15 0.384 
19 Endosulfan sulfate C9H6Cl6O4S 30.09 28.10 0.364 
20 Diflufenican C19H11F5N2O2 31.14 35.31 0.762 
21 Chrysene C18H12 32.02 39.80 1.420 
22 Metoxychlor C16H15Cl3O2 32.42 34.52 0.383 
23 Phosalone C12H15ClNO4PS2 33.44 28.64 0.876 

24  -Cyhalothrin C23H19ClF3NO3 34.34 31.73 0.477 
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25 Permethrin I C21H20Cl2O3 35.65 32.60 0.557 
26 Benzo(k)fluoranthene C20H12 36.65 38.49 0.337 
27 Cypermethrin III C22H19Cl2NO3 37.79 37.99 0.036 
28 Fenvalerate II C25H22ClNO3 39.55 39.72 0.031 
29 Deltamethrin C22H19Br2NO3 40.55 34.50 1.105 
30 BDE 183 C12H3OBr7 43.65 40.81 0.519 

The whole of these data clearly displays a significant improvement of the QSRR model consequent 

to nonlinear statistical treatment. Obviously, there is a close agreement between the experimental 

and predicted RT and the data represent a very low scattering around a straight line with 

respective slope and intercept close to one and zero. As can be seen in this section, the L-M ANN is 

more reproducible than GA-PLS and GA-KPLS for modeling the retention time of organic 

contaminants in natural water and wastewater.   

Model validation and statistical parameters 

Model validation 

Validation is a crucial aspect of any QSPR/QSRR modeling. The accuracy of proposed models was 

illustrated using the evaluation techniques such as leave-group-out cross validation (LGO-CV) 

procedure and validation through an external test set. 

3.3.2 Cross validation technique Cross validation is a popular technique used to explore the 

reliability of statistical models. Based on this technique, many modified data sets are created by 

deleting in each case one or a small group (leave-some-out) of objects. For each data set, an input–

output model is developed, based on the utilized modeling technique. Each model is evaluated, by 

measuring its accuracy in predicting the responses of the remaining data (the ones or group data 

that have not been utilized in the development of the model) [37]. The LGO procedure was utilized 

in this study. A QSRR model was then constructedbased on this reduced data set and subsequently 

used to predict the removed data. This procedure was repeated until a complete set of predicted 

was obtained. The statistical significance of the screened model was judged by the correlation 

coefficient (Q2).  

The accuracy of cross validation results is extensively accepted in the literature considering the Q2 

value. In this sense, a high value of the statistical characteristic (Q2 > 0.5) is considered as proof of 

the high predictive ability of the model. However, this assumption is in many cases incorrect and 

can be that exist the lack of the correlation between the high LGO Q2 and the high predictive ability 

of QSRR models has been established and corroborated recently [38]. Thus, the high value of LGO-

CV Q2 appears to be necessary but not sufficient condition for the models to have a high predictive 
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power. These authors stated that an external set is necessary. As a next step, further analysis was 

also followed for chemical property of the new set of compounds using the developed QSRR model. 

Validation through the external validation set 

Validating QSRR with external data (i.e. data not used in the model development) is the best 

method of validation. However, the availability of an independent external validation set of several 

compounds is rare in QSRR. Thus, the predictive ability of a QSRR model with the selected 

descriptors was further explored by dividing the full data set. The predictive power of the models 

developed on the selected training set is estimated on the predicted values of test set chemicals. 

The data set was randomly divided into training (calibration and prediction sets) and test sets after 

sorting based on the RT values. The data set was randomly divided into three groups including 

calibration and prediction sets (training set) and test set. The calibration set was used for model 

generation. The prediction set was applied deal with overfitting of the network, whereas test set 

which its molecules have no role in model building was used for the evaluation of the predictive 

ability of the models for external set. The calibration set consisted of 90 molecules; prediction set 

consisted of 30 molecules and the test set, consisted of 30 molecules. The whole of these data 

clearly displays a significant improvement of the QSRR model consequent to non-linear statistical 

treatment and a substantial independence of model prediction from the structure of the test 

molecule. In the above analysis, the descriptive power of a given model has been measured by its 

ability to predict retention of unknown molecules. For instance, as to prediction ability, it can be 

observed in Figure 3 that scattering of data points from the ideal trend in test set is poor. 

Statistical parameters 

For the constructed models, some general statistical parameters were selected to evaluate the 

predictive ability of the models for RT values. In this case, the predicted RT of each sample in 

prediction step was compared with the experimental acidity constant. 

Root mean square error (RMSE) is a measurement of the average difference between predicted and 

experimental values, at the prediction step. RMSE can be interpreted as the average prediction 

error, expressed in the same units as the original response values. Its small value indicates that the 

model predicts better than chance and can be considered statistically significant. The RMSE was 

obtained by the following formula: 
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   The other statistical parameter was relative error (RE) that shows the predictive ability of each 

component, and is calculated as: 
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   The predictive ability was evaluated by the cross validation coefficient (Q2 or R2cv) which is based 

on the prediction error sum of squares (PRESS) and was calculated by following equation: 
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   Where yi is the experimental RT in the sample i, 
iy



 represented the predicted RT in the sample 

i,
_

y  is the mean of experimental RT in the prediction set and n is the total number of samples used 

in the test set [39, 40].  

Conclusion 

Organic pollutants in water can harm the environment and pose health risks for humans. Organic 

pollutants pose special risks because they are often not naturally broken down and can remain in 

water sources for decades or longer. The analysis of organic pollutants in water allows managers to 

assess the quality and safety of water sources. The GA-PLS, GA-KPLS and L-M ANN modeling was 

applied for the prediction of the retention time of 150 organic contaminants in natural water and 

wastewater. High correlation coefficients and low prediction errors confirmed the good 

predictability of models. Application of the developed model to a validation set of 30 compounds 

demonstrates that the new model is reliable with good predictive accuracy and simple formulation. 

Three methods seemed to be useful, although a comparison between these methods revealed the 

slight superiority of the L-M ANN over the other models.  
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