Document Type: Original Article

Authors

1 LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

2 Equipe Matériaux, Environnement & Modélisation,ESTM, University Moulay Ismail, Meknes, Morocco

Abstract

A study of quantitative structure-activity relationship (QSAR) is applied to a set of 24 molecules derived from diarylaniline to predict the anti-HIV-1 biological activity of the test compounds and find a correlation between the different physic-chemical parameters (descriptors) of these compounds and its biological activity, using principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear regression (MNLR) and the artificial neural network (ANN). We accordingly proposed a quantitative model (non-linear and linear QSAR models), and we interpreted the activity of the compounds relying on the multivariate statistical analysis. The topological descriptors were computed with ACD/ChemSketch and ChemBioOffice14.0 programs. A correlation was found between the experimental activity and those obtained by MLR and MNLR such as (Rtrain = 0.886 ; R2train = 0.786) and (Rtrain = 0.925 ; R2train = 0.857) for the training set compounds, and (RMLR-test = 0.6) and (RMNLR-test = 0.7) for a randomly chosen test set of compounds, this result could be improved with ANN such as (R = 0.916 and R2 = 0.84) with an architecture ANN (6-1-1). To evaluate the performance of the neural network and the validity of our choice of descriptors selected by MLR and trained by MNLR and ANN, we used cross-validation method (CV) including (R = 0.903 and R2 = 0.815) with the procedure leave-one-out (LOO). The results showed that the MLR and MNLR have served to predict activities, but when compared with the results given by a 6-1-1 ANN model. We realized that the predictions fulfilled by the latter model were more effective than the other models. The statistical results indicated that this model is statistically significant and showing a very good stability towards the data variation in leave-one-out (LOO) cross validation.

Graphical Abstract

Keywords

Main Subjects

[1]Mandal A.S., Roy K. Eur. J. Med. Chem., 2009, 44:1509

[2]Vadivelan S., Deeksha T.N., Arun S., Machiraju P.K., Gundla R., Sinha B.N. Eur.J. Med. Chem., 2011,  46:851

[3]Corbett J.W., Gearhart L.A., Ko S.S., Rodgers J.D., Cordova B.C., Klabe R.M., Erickson-Viitanen S.K. Bioorg. Med. Chem. Lett., 2000, 10:193

[4]Masuda N., Yamamoto O., Fujii M., Ohgami T., Fujiyasu J., Kontani T., Moritomo A., Orita M., Kurihara H., Koga H., Kageyama S., Ohta M., Inoue H., Hatta T., Shintani M., Suzuki H., Sudo K., Shimizu Y., Kodama E., Matsuoka M., Fuji-wara M., Yokota T., Shigeta S., Baba M. Bioorg. Med. Chem., 2005, 13:949

[5]Spallarossa A., Cesarini S., Ranise A., Schenone S., Bruno O., Borassi A., Colla P.L., Pezzullo M., Sanna G., Collu G., Secci B., Loddo R. Eur. J. Med. Chem., 2009,  44:2190

[6]Weitman M., Lerman K., Nudelman A., Major D.T., Hizi A., Herschhorn A. Eur. J. Med. Chem., 2011, 46:447

[7]Rosa D.L.M., Kim H.W., Gunic E., Jenket C., Boyle U., HyoKoh Y., Korboukh I., Allan M., Zhang W., Chen H., Xu W., Nilar S., Yao N., Hamatake R., Lang S.A., Hong Z., Zhang Z., Girardet J.L. Bioorg. Med. Chem. Lett., 2006, 16:4444

[8]Ellis D., Kuhen K.L., Anaclerio B., Wu B., Wolff K., Yin H., Bursulaya B., Caldwell J., Karanewsky D., He Y. Bioorg. Med. Chem.Lett., 2006, 16:4246

[9] Rios A., Quesada J., Anderson D., Goldstein A., Fossum T., Colby-Germinario S., Wainberg M.A. Virus. Res., 2011, 155:189

[10] Spallarossa S., Cesarini A., Ranise O., Bruno S., Schenone P., La Colla G., Collu G., Sanna B., Secci R. Eur. J.Med. Chem., 2009, 44:1650

[11]He Y., Chen F., Sun G., Wang Y., De Clercq E., Balzarini J., Pan-necouque C. Bioorg. Med.Chem. Lett., 2004, 14:3173

[12]Monforte A.M., Logoteta P., De Luca L., Iraci N., Ferro S., Maga G., De Clercq E., Pannecouque C., Chimirri A. Bioorg. Med.Chem., 2010, 18:1702

[13]Liang Y.H., He Q.Q., Zeng Z.S., Liu Z.Q., Feng X.Q., Chen F.E., Balzarini J., Pannecouque C., De Clercq E. Bioorg. Med.Chem., 2010, 18:4601

[14]Zeng Z.S., He Q.Q., Liang Y.H., Feng X.Q., Chen F.Er., DeClercq E., Balzarini J., Pannecouque C. Bioorg. Med.Chem., 2010, 18:5039

[15]Qin X., Jiang H., Lu X., Tian F., Barbault L., Huang K., Qian C.H., Chen R., Huang S., Jiang K.H., Lee L. J. Med. Chem., 2010, 53:4906

[16]Nantasenamat C., Isarankura-Na-Ayudhya C., Naenna T., Prachayasittikul V. J. Excli., 2009, 8:74

[17]Nantasenamat C., Isarankura-Na-Ayudhya C., Prachayasittikul V. Expert Opin Drug  Discov., 2010, 5:633

[18]Advanced Chemistry Development Inc., Toronto, Canada., 2009 http://www.acdlabs.com/resources/freeware/chemsketch

[19]ACD/ChemSketch Version 4.5 for Microsoft Windows User’s Guide.

[20]ACD/Labs Extension for ChemBioOffice Version 14.0 for Microsoft Windows User’s Guide.

[21]Allinger N.L. J. Am. Chem. Soc., 1977, 99:8127

[22]XLSTAT 2015 Add-in software (XLSTAT Company). www.xlstat.com

[23]Boukarai Y., Khalil F., Bouachrine M. Int. J. Scien. Engin. Res., 2015, 6:159

[24]Boukarai Y., Khalil F., Bouachrine M. J. Chem. Pharm. Res., 2016, 8:1000

[25]Zupan V.J., Gasteiger J. Neural Networks for Chemists - An Introduction, VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New York., 1993, 106:1367

[26]Cherqaoui D., Villemin D, J. Chem. Soc. Faraday. Trans., 1994, 90:97

[27]Freeman J.A., Skapura D.M., Neural Networks Algorithms, Applications, and Programming

Techniques.Addition Wesley Publishing Company, Reading, 1991

[28]Efron B. J. Am.Stat. Assoc., 1983, 78:316

[29]Efroymson M.A., Multiple regression analysis, In Mathematical Methods for Digital  Computers, Ralston A., Wilf H.S., Eds,Wiley NewYork, 1960

[30]Osten D.W., Selection of optimal regression models via cross-validation, J. Chemom., 1998, 2:39

[31]Boukarai Y., Khalil F., Bouachrine M. J. Chem. Pharm..Res.,2016, 8:136

[32]Boukarai Y., Khalil F., Bouachrine M. J. mater.  Envir. Scien., 2017, 8:1532

[33] So S.S., Richards W.G. J. Med. Chem., 1992, 35:3201

[34]Andrea T.A., Kalayeh H. J. Med. Chem., 1991, 34:2824

[35]Boukarai Y., Khalil F., Bouachrine M. Der. Pharma. Chem., 2016, 8:171

[36]Bhadoriyaa K.S., Sharmab M.C., Jainc S.V. J. Taibah University for Scien., 2015, 9:521