Original Research article

On Topological Indices of Circumcoronene Series of Benzenoid

Yingying Gao ${ }^{\text {a }}$, Mohammad Reza Farahanib *, Waqas Nazeer ${ }^{\text {c }}$
a College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
b Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.
c Division of Science and Technology, University of Education, Lahore 54000, Pakistan

ARTICLE INFORMATION

Received: 08 October 2017

Received in revised: 15 December
2017
Accepted: 01 January 2018
Available online: 05 January 2018
DOI:
10.22631/chemm.2017.99300.1013

KEYWORDS

Molecular Graph
Circumcoronene series of Benzenoid
Topological index
Multiplicative Zagreb Eccentricity index

Abstract

Let G be a connected graph with vertex and edge sets $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$, respectively. The first Zagreb index $\mathrm{M}_{1}(\mathrm{G})$ was originally defined as the sum of the squares of the degrees of all vertices of G . Recently, we know a new version of the first Zagreb index as the Multiplicative Zagreb Eccentricity index that introduced by Nilanjan De and $\varepsilon(u)$ is the largest distance between u and any other vertex v of G. In this paper we compute this new topological index of famous molecular graph "Circumcoronene Series of Benzenoid H_{k} ".

[^0]
Graphical Abstract

Introduction

Let G be a connected graph with vertex and edge sets $V(G)$ and $E(G)$ and order n and size m , respectively. For every vertex $u \in V(G)$, the edge connecting u and v is denoted by $u v$ and the degree of any vertex is the number of first neighbour of v and is denoted by $d_{G}(u)$ (or d_{u}). Let the maximum and minimum degree of all the vertices of G are respectively denoted by Δ and δ. The distance of any two vertices u and v of is defined as the length of the shortest path connecting u and v and is denoted by $d(u, v)$. The maximum eccentricity over all vertices of G is called the diameter of G and denoted by $D(G)$. Also, the minimum eccentricity among vertices of G is called the radius and denoted by $r(G)$. In other words:

$$
\begin{align*}
& D(G)=\operatorname{Max}_{v \in V(G)}\{d(u, v) \mid \forall u \in V(G)\} \tag{1}\\
& R(G)=\operatorname{Min}_{v \in V(G)}\{\operatorname{Max}\{d(u, v) \mid \forall u \in V(G)\}\} \tag{2}
\end{align*}
$$

Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modelling of the chemical phenomena [1-3]. This theory had an important effect on the development of the chemical sciences. A topological index of a graph is a number related to a graph which is invariant under graph automorphisms and is a numeric quantity from the structural graph of a molecule. One of the best known and widely used is the Zagreb topological index introduced in 1972 by I. Gutman and N. Trinajstić and is defined as the sum of the squares of the degrees of all vertices of $G[4,5]$. The first Zagreb index $M_{1}(G)$ was originally defined as follows:

$$
\begin{equation*}
M_{1}(G)=\sum_{v \in(G)}\left(d_{v}\right)^{2}=\sum_{e=u v \in E(G)}\left(d_{u}+d_{v}\right) . \tag{3}
\end{equation*}
$$

where d_{v} denotes the degree of vertex v in G. The multiplicative version of this first Zagreb index was introduced by Todeschini et. al. $[6,7]$ and is defined as:

$$
\begin{equation*}
\Pi M_{1}(G)=\prod_{w \in E(G)} d_{v}{ }^{2} \tag{4}
\end{equation*}
$$

The eccentric version of the first Zagreb index was introduced by M. Ghorbani et al. [8] and D. Vukicevic et al. [9] in 2012 as follows:

$$
M^{* *}(G)=\sum_{v \varepsilon(G)} \varepsilon(v)^{2}
$$

The eccentricity of a vertex is the distance between v and a vertex farthest from v and is denoted by $\varepsilon(v)$. In other words, $\varepsilon(v)=\operatorname{Max}\{d(u, v) \mid \forall u \in V(G)\}$. The Eccentric Connectivity index $\zeta(G)$ of a graph G is defined as [10]:

$$
\zeta(G)=\sum_{v e(G)} d_{v} \times \varepsilon(v), \quad \text { (6) }
$$

where $\varepsilon(u)$ is the eccentricity of vertex u. This index introduced by Sharma et al. in 1997 [10-15]. Recently in 2012, Nilanjan De introduced a new version of First Zagreb index [16] as the Multiplicative Zagreb Eccentricity index and defined as follows:

$$
\begin{equation*}
\Pi E_{1}(G)=\prod_{w \in E(G)} \varepsilon(v)^{2} \tag{7}
\end{equation*}
$$

where $\varepsilon(u)$ is the largest distance between u and any other vertex v of G . The readers interested in more information and some mathematical properties of Zagreb indices for general graphs can be referred to [18-30]. The aim of this paper is to investigate a closed formula of this new topological index "Multiplicative Zagreb Eccentricity index" for famous Benzenoid molecular graph "Circumcoronene series of Benzenoid $H_{k}(k \geq 1)$ ".

Results and Discussion

The Circumcoronene series of Benzenoid is a famous family of Benzenoid molecular graph, which this family built solely from benzene C_{6} (or hexagons) on circumference. For more detail of Benzenoid molecular graphs, see the paper series [29-38]. The general representations and first members of this family are shown in Figures 1 and 2.

Figure 1. Some first members of Circumcoronene Series of Benzenoid $H_{k}(\forall k \geq 1)$ [29-33].
Theorem 1. [30] Let H_{k} be the Circumcoronene Series of Benzenoid, $\forall k \geq 1$. Then the First Zagreb index of H_{k} is equal to $M_{1}\left(H_{k}\right)=54 k^{2}-30 k$.
Theorem 2. [15] Consider the Circumcoronene series of Benzenoid $H_{k}, \forall k \geq 1$. Then the Eccentric Connectivity index of H_{k} is equal to $\zeta\left(H_{k}\right)=60 k^{3}-24 k^{2}-18 k+18$.
Theorem 3. [29]The first eccentric Zagreb index of the Circumcoronene series of Benzenoid H_{k}, $\forall k \geq 1$ is equal to $M^{* *}{ }_{1}\left(H_{k}\right)=68 k^{4}+4 k^{3}-65 k^{2}+71 k-24$.

Theorem 4. Let G be the Circumcoronene series of Benzenoid $H_{k}(k \geq 1)$. Then the Multiplicative Zagreb Eccentricity index of H_{k} is equal to:

$$
\begin{equation*}
\Pi E_{l}\left(H_{k}\right)=\prod_{i=1}^{k}\left((2 k+2 i-1)^{12 i}\right)\left((2 k+2 i-2)^{12(i-1)}\right) \tag{8}
\end{equation*}
$$

Proof. Consider the Circumcoronene series of Benzenoid $H_{k}(k \geq 1)$ as shown in Figure2. And let the vertex/atom and edge/bond sets of $H_{k}, \forall k \geq 1$ are equal to:

$$
V\left(H_{k}\right)=\left\{\gamma_{z} i_{i} j, \beta_{z} i_{j} j \mid i \in \mathbb{Z}_{k} \& j \in \mathbb{Z}_{i} \& z \in \mathbb{Z}_{6}\right\}
$$

and $E\left(H_{k}\right)=\left\{\gamma^{i_{z, j}} \beta^{i_{z, j}}, \gamma_{z, j+1} \beta_{z, j, j} \gamma^{i-1} z_{z, j} \beta_{z, j}\right.$ and $\left.\gamma_{z, j} i^{i_{z, j+1}} \mid i \in \mathbb{Z}_{k} \& j \in \mathbb{Z}_{i} \& z \in \mathbb{Z}_{6}\right\}$.
And the size of vertex and edge sets of H_{k} are equal to

$$
\begin{gather*}
n_{k}=\left|V\left(H_{k}\right)\right|=6 \sum_{i=1}^{k} i+6 \sum_{i=0}^{k-1} i=6 k^{2} \\
\text { and } m_{k}=\left|E\left(H_{k}\right)\right|=6 \sum_{i=1}^{k-1} i+6 \sum_{i=1}^{k-1} i+6 \sum_{i=1}^{k-1} i \quad+6 k=9 k^{2}-3 k . \tag{9}
\end{gather*}
$$

Figure 2. The Circumcoronene series of Benzenoid $H_{k}(k \geq 1)$ [29-33].
To compute the Multiplicative Zagreb Eccentricity index of H_{k}, we used the Cut Method and the Ring-cut Method. The readers can consult [15, 29-33, 37, 38] for more information about the Cut Method and it modify version Ring-cut Method. The Ring-cut Method divides all vertices of a graph G into some partitions with similar mathematical and topological properties. We encourage readers see the ring-cuts of Circumcoronene series of Benzenoid in Figure 3, such that $\forall i=1, \ldots, k$ and $\forall j \in \mathbb{Z}_{i}$ \& $\forall z \in \mathbb{Z}_{6}$; all vertices $\beta_{z, j}^{i}, \gamma_{z, j}^{i}$ are from $I^{\text {th }}$ ring cut R_{i} of H_{k}.
Now, from the general representation of Circumcoronene series of Benzenoid H_{k} in Figure 2 and Figure 3 and, we can see that

By above mansions, it is easy to see that the radius and diameter numbers of H_{k} are equal to $R\left(H_{k}\right)=2 k+1$ and $D\left(H_{k}\right)=4 k-1$, respectively. Now by using above mention results, we can compute the

Multiplicative Zagreb Eccentricity index of Circumcoronene series of Benzenoid $H_{k}, \forall k \in \mathbb{Z}$ as follows:

$$
\Pi E_{1}\left(H_{k}\right)=\prod_{v \in V\left(H_{k}\right)}^{\varepsilon(v)^{2}}
$$

$$
=\prod_{\gamma_{z, j}^{i} \in V\left(H_{k}\right)} \varepsilon^{2}\left(\gamma_{z, j}^{i}\right) \times \prod_{\beta_{z, j}^{i} \in V\left(H_{k}\right)} \varepsilon^{2}\left(\beta_{z, j}^{i}\right)=\prod_{z=1}^{6}\left(\prod_{i=1}^{k} \prod_{j=1}^{i} \varepsilon^{2}\left(\gamma_{z, j}^{i}\right)\right) \times \prod_{z=1}^{6}\left(\prod_{i=2}^{k} \prod_{j=1}^{i} \varepsilon^{2}\left(\beta_{z, j}^{i}\right)\right)
$$

$$
\prod_{i=1}^{k} \prod_{j=1}^{i}\left(\varepsilon^{2}\left(\gamma_{z, j}^{i}\right)\right)^{6} \times \prod_{i=2}^{k} \prod_{j=1}^{i}\left(\varepsilon^{2}\left(\beta_{z, j}^{i}\right)\right)^{6}
$$

$$
=\left(\prod_{i=1}^{k}\left((2 k+2 i-1)^{(i)}\right)^{12}\right) \times\left(\prod_{i=2}^{k}\left((2 k+2 i-2)^{(i-1)}\right)^{12}\right)
$$

$$
=\left(\prod_{i=1}^{k}\left((2 k+2 i-1)^{(i)}\right)^{12}\right) \times\left(\prod_{i=1}^{k}\left((2 k+2 i-2)^{(i-1)}\right)^{12}\right) \times(2 k)^{0}
$$

$$
\begin{equation*}
\prod_{i=1}^{k}\left((2 k+2 i-1)^{12 i}\right)\left((2 k+2 i-2)^{12(i-1)}\right) \tag{12}
\end{equation*}
$$

Figure 2. The Ring-cuts of Circumcoronene series of Benzenoid $H_{k}(k \geq 1)$ [29-33].
Finally, the Multiplicative Zagreb Eccentricity index of $H_{k} \forall k \in \mathbb{Z}$ is equal to

$$
\begin{equation*}
\Pi E_{1}\left(H_{k}\right)=\prod_{i=1}^{k}\left((2 k+2 i-1)^{12 i}\right)\left((2 k+2 i-2)^{12(i-1)}\right) \tag{13}
\end{equation*}
$$

Conclusion

For a connected graph G, the Multiplicative Zagreb Eccentricity index is equal to $\Pi E_{1}(G)=\prod_{v \varepsilon(G)} \varepsilon(v)^{2}$, where $\varepsilon(v)$ denotes the eccentricity of a vertex is the distance between v and a vertex farthest from V.

In this paper, we obtained a closed formula of this new index the (Multiplicative Zagreb Eccentricity index) of famous Benzenoid molecular graph for the first time that we called "Circumcoronene series of benzenoid $H_{k}(k \geq 1)$ ".

References

[1] West D.B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.
[2] Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley, Weinheim. 2000.
[3] Balaban A.T. (Ed.), From Chemical Topology to Three-dimensional Geometry, Plenum, New York, 1997.
[4] Gutman I., Trinajstić N. Chem. Phys. Lett., 1972, 17:535
[5] Gutman I., Das K.C. MATCH Commun. Math. Comput. Chem., 2004, 50:83
[6] Todeschini R., Consonni V. MATCH Commun. Math. Comput. Chem., 2010, 64:359
[7] Todeschini R., Ballabio D., Consonni V., Novel molecular descriptors based on functions of the vertex degrees, in: I.Gutman, B. Furtula (Eds.), Novel Molecular Structure Descriptors - Theory and Applications I, Univ. Kragujevac, Kragujevac, 2010, 73-100
[8] Ghorbani M., Hosseinzadeh M.A., Filomat, 2012, 26:93
[9] Vukicevic D., Graovac A. Acta. Chim. Slov., 2010, 57;524
[10] Sharma V., Goswami R., Madan A.K. J. Chem. Inf. Comput. Sci., 1997, 37:273
[11] Sardana S., Madan A.K. MATCH Commun. Math. Comput. Chem., 2001, 43:85
[12] Gupta S., Singh M., Madan A.K. J. Math. Anal. Appl., 2002, 266: 259
[13] Furtula B., Graovac A., Vukičević D. Disc. Appl. Math., 2009, 157:2828
[14] Fischermann M., Homann A., Rautenbach D., Szekely L.A., Volkmann L. Discrete Appl. Math., 2002, 122:127
[15] Farahani M.R. Annals of West University of Timisoara-Mathematics and Computer Science., 2013, 51:29
[16] De N. South Asian J. Math., 2012, 2:570
[17] Nikolic S., Kovacevic G., Milicevic A., Trinajstić N. Croat. Chem. Acta, 2003, 76:113
[18] Braun J., Kerber A., Meringer M., Rucker C. MATCH Commun. Math. Comput. Chem., 2005, 54:163
[19] Khalifeh M.H., Yousefi-Azari H., Ashrafi A.R. Discr. Appl. Math., 2009, 157:804
[20] Gutman I. Bull. Internat. Math. Virt. Inst., 2011, 1:13
[21] Xu K., Hua H. MATCH Commun. Math. Comput. Chem., 2012, 68: 241
[22] Liu J., Zhang Q. MATCH Commun. Math. Comput. Chem., 2012, 68:231
[23] Reti T., Gutman I. Bull. Internat. Math. Virt. Inst., 2012, 2: 133
[24] Luo Z., Wu J. Trans. Comb., 2014, 3:21
[25] Wang H., Bao H. South Asian J Math, 2012, 2:578
[26] Farahani M.R. Journal of Chemistry and Materials Research, 2015, 2:67
[27] Farahani M.R. Int. Lett.Chem. Phy. Ast., 2015, 52:147
[28] Farahani M.R. New. Front. Chem., 2014, 23:141
[29] Farahani M.R. Chem. Phy. Res. J., 2014, 7:277
[30] Farahani M.R. Adv. Mater. Corr., 2013, 2:16
[31] Farahani M.R. Chem. Phy. Res. J., 2013, 6:27
[32] Farahani M.R. J. Adv. Phy., 2013, 2:48
[33] Farahani M.R, World Appl. Sci. J., 2013, 21:1260
[34] Zigert P., Klavžar S., Gutman I. ACH Models Chem., 2000, 137:83
[35] Soncini A., Steiner E., Fowler P.W., Havenith R.W.A., Jenneskens L.W. Chem. Eur. J., 2003, 9:2974
[36] John P.E., Khadikar P.V., Singh J. J. Math. Chem., 2007, 42:27
[37] Klavžar S., Gutman I., Mohar B. J. Chem. Int Comput. Sci., 1995, 35:590
[38] Klavžar S. MATCH Commun. Math. Comput. Chem., 2008, 60:255
How to cite this manuscript: Yingying Gao, Mohammad Reza Farahani*, Waqas Nazeer. On Topological Indices of Circumcoronene Series of Benzenoid. Chemical Methodologies 2(1), 2018, 39-46. DOI: 10.22631/chemm.2017.99300.1013.

[^0]: *Corresponding author: Email: Mr_Farahani@Mathdep.iust.ac.ir
 Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran.

