Document Type : Review Article


1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2 Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria

3 National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100190, China

4 Department of Chemistry, University of Ilorin, Ilorin, Nigeria

5 Ningbo Institute of Material Science and Engineering, Zhejiang, China



The pursuit of rapid development in the area of catalysis, solar energy, environmental remediation, wastewater treatment and other aspects of ecological and sustainable chemistry has prompted substantial research by material chemists, physicists, academics and other scientists for the development of porous material. A lot of energy had been invested in this course by scientist, research organizations and public sector agencies from antiquity, but the resulting solution has been somewhat undesirable until two decades ago when Metal-Organic Frameworks (MOFs) appears to offer a glimpse of solution to those challenging issues. The adaptability, flexibility, uniqueness and usability of the metal-organic frameworks material, and its suitability to every facet of scientific and technological advancement has since triggered an incredible upsurge in studies aimed at uncovering more of the inherent influential properties of the materials, and its improvement for the betterment of material science and research world. This review is aimed at investigating some of the recent advancements/ breakthrough in metal-organic frameworks, synthetic methodologies and impending applications.

Graphical Abstract

Metal-Organic Frameworks (MOFs): Recent Advances in Synthetic Methodologies and Some Applications


Main Subjects

[1] Farha O.K., Yazaydin A.O., Eryazici I., Malliakas C.D., Hauser B.G., Kanatzidis M.G., Nguyen S.T., Snurr R.Q., Hupp J.T. Nat. Chem., 2010, 2:944

[2] Farha O.K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant A.A., Snurr R.Q., Nguyen S.T., Yazaydin A.O., Hupp J.T. J. Am. Chem. Soc., 2012, 134:15016

[3] Suh M.P., Park H.J., Prasad T.K., Lim D.W. Chem. Rev., 2012, 112:782

[4] Li J.R., Sculley J. Zhou H.C. Chem. Rev., 2012, 112:869

[5] Kreno L.E., Leong K., Farha O.K., Allendorf M., Van Duyne R.P., Hupp J.T. Chem. Rev., 2012, 112:1105

[6] Ma L.Q., Falkowski J.M., Abney C., Lin W.B. Nat. Chem., 2010, 2:838

[7] Lee J.Y., Farha O.K., Roberts J., Scheidt K.A., Nguyen S.T., Hupp J.T. Chem. Soc. Rev., 2009, 38:1450

[8] Juzenas P., Chen W., Sun Y.P., Coelho M.A.N., Generalov R., Generalova N., Christensen I.L. Adv. Drug Deliver. Rev., 2008, 60:1600

[9] Probst C.E., Zrazhevskiy P., Bagalkot V., Gao X. Adv. Drug Deliver. Rev., 2013, 65:703

[10] Rabone J., Yue Y.F., Chong S.Y., Stylianou K.C., Bacsa J., Bradshaw D., Darling G.R., Berry N.G., Khimyak Y.Z., Ganin A.Y., Wiper P., Claridge J.B., Rosseinsky M.J. Science, 2010, 329:1053

[11] Biradha K., Ramanan A., Vittal J.J. Cryst. Growth Des., 2009, 9:2969

[12] Bailar J.C., Jr Prep. Inorg. React. 1964, 1:1

[13] Hoskins B.F., Robson R. J. Am. Chem. Soc., 1989, 111:5962

[14] Robson R. Dalton Trans., 2008, 14:5113

[15] Hoskins B.F., Robson R. J. Am. Chem. Soc., 1990, 112: 1546

[16] (a) Stock N., Biswas S. Chem. Rev., 2012, 112:933 (b) Cohen S.M. Chem. Rev., 2012, 112:970

[17] Wang H., Yuan X.Z., Wu Y., Zeng G.M., Chen X.H., Leng L.J., Wu Z.B., Jiang L.B., Li H., J. Hazard. Mater., 2015, 286:187

[18] Liang R.W., Jing F.F., L. J. Shen, N. Qin and L. Wu, J. Hazard. Mater, 2015, 287:364

[19] Xu Q.Q., Fan H.J., Li Y.T., Christensen K.E., Ren T.Z. Polyhedron, 2015, 92:60

[20] Millward A.R., Yaghi O.M. J. Am. Chem. Soc., 2005, 127:17998

[21] Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.H., Long J.R. Chem. Rev., 2012, 112:724

[22] Liu X.J., Zhang Y.H., Chang Z., Li A.L., Tian D., Yao Z.Q., Jia Y.Y., Bu X.H. Inorg. Chem., 2016, 55:7326

[23] Wang B., Lv X.L., Feng D., Xie L.H., Zhang J., Li M., Xie Y., Li J.R., Zhou H.C. J. Am. Chem. Soc., 2016, 138:6204

[24] Couck S., Denayer J.F.M., Baron G.V., Remy T., Gascon J., Kapteijn F., J. Am. Chem. Soc., 2009, 131:6326

[25] Bauer S., Serre C., Devic T., Horcajada P., Marrot J., Ferey G., Stock N., Inorg. Chem., 2008, 47:7568

[26] Serra-Crespo P., Ramos-Fernandez E.V., Gascon J., Kapteijn F. Chem. Mater., 2011, 23:2565

[27] Ahnfeldt T., Guillou N., Gunzelmann D., Margiolaki I., Loiseau T., Ferey G., Senker J., Stock N., Angew. Chem., Int. Ed., 2009, 121:5265

[28] Bloch E.D., Britt D., Lee C., Doonan C.J., Uribe-Romo F.J., Furukawa H., Long J.R., Yaghi O.M. J. Am. Chem. Soc., 2010, 132:14382

[29] Demessence A., D’Alessandro D.M., Foo M.L., Long J.R. J. Am. Chem. Soc., 2009, 131:8784

[30] Hu Y., Verdegaal W.M., Yu S.H., Jiang H.L. ChemSusChem., 2014, 7:734

[31] Dhakshinamoorthy A., Asiri A.M., Garcia H. Angew. Chem., Int. Ed., 2016, 55:5414

[32] Zeng L., Guo X.Y., He C., Duan C.Y. ACS Catal., 2016, 6:7935

[33] Horiuchi Y., Toyao T., Saito M., Mochizuki K., Iwata M., Higashimura H., Anpo M., Matsuoka M. J. Phys. Chem., C 2012, 116:20848

[34] Fu Y.H., Sun D.R., Chen Y.J., Huang R.K., Ding Z.X., Fu X.Z., Li Z.H. Angew. Chem., Int. Ed., 2012, 51:3364

[35] Zhu Q.L., Xu Q. Chem. Soc. Rev., 2014, 43:5468

[36] Henschel A., Gedrich K., Kraehnert R., Kaskel S. Chem. Commun., 2008, 21:4192

[37] Horcajada P., Surble S., Serre C., Hong D.Y., Seo Y.K., Chang J.S., Greneche J.M., Margiolaki I., Férey G., Chem. Commun., 2007, 19:2820

[38] Byrappa K., Yoshimura M. In Handbook of Hydrothermal Technology (Materials and Processing Technology); Noyes Publications: New York, 2002; Chapter 1.2.

[39] Rabenau A. Angew. Chem., Int. Ed. Engl., 1985, 24:1026

40.Huang L., Wang H., Chen J., Wang Z., Sun J., Zhao D., Yan Y. Microporous Mesoporous Mater., 2003, 58:105

[41] Tranchemontagne D., Hunt J., Yaghi O.M. Tetrahedron, 2008, 64:8553

[42] Cravillon J., Münzer S., Lohmeier S.J., Feldhoff A., Huber K., Wiebcke M. Chem. Mater., 2009, 21:1410

[43] Forster P. M., Stock N., Cheetham A. K. Angew. Chem., Int. Ed., 2005, 44:7608

[44] Bauer S., Stock N. Angew. Chem Int. Ed., 2007, 46:6857

[45] Biemmi E., Christian S., Stock N., Bein T. Microporous Mesoporous Mater., 2009, 117:111

[46] Millange F., Osta R.E., Medina M.E., Walton R.I. Cryst. Eng. Commun., 2011, 13:103

[47] Schubert M., Münzer U., Tonigold M., Ruetz R. Patent WO2007/023134 A1

[48] Schubert M., Münzer U., Mattenheimer H., Tonigold M. patent WO2007/023119

[49] Shono T., Mingos D.M.P., Baghurst D.R., Lickiss P.D. Novel Energy Sources for Reactions. In The New Chemistry; Hall, N., Ed.; the Press Syndicate of the University of Cambridge: Cambridge, 2000, Chapter 4

[50] Rabenau A. Angew. Chem., Int. Ed. Engl., 1985, 24:1026

[51] Hoskins B.F., Robson R. J. Am. Chem. Soc., 1990, 112:1546

[52] Chen B.Y., Chen D., Kang Z.T., Zhang Y.Z. J. Alloys Compd., 2015, 618:222

[53] Chen D., Zhang Y.Z., Kang Z.T. Chem. Eng. J., 2013, 215:235

[54] Chen D., Zhang Y.Z., Tu C.J. Mater. Lett., 2012, 82:10

[55] Chen D., Zhang Y.Z., Chen B.Y., Kang Z.T. Ind. Eng. Chem. Res., 2013, 52:14179

[56] Chen G., Song Z., Chen J., Peng J.H. J. Alloys Compd., 2013, 579:612

[57] Zhang Y.Z., Kang Z.T., Chen D. Mater. Lett., 2014, 133:259

[58] Chen G. J. Alloys Compd., 2015, 651:503

[59] Kappe C.O., Dallinger D., Murphree S. In Practical Microwave Synthesis for Organic Chemists: Stategies, Instruments, and Protocols; Wiley VCH: Weinheim, 2008

[60] Kappe C.O. Chem. Soc. Rev., 2008, 37:1127

[61] Klinowski J., Paz F.A.A., Rocha J. Dalton Trans., 2011, 40:321

[62] Suslick K.S., Choe S.B., Cichowlas A.A., Grinstaff M.W. Nature, 1991, 353:414

[63] Gedanken A. Ultrason. Sonochem., 2004, 11:47

[64] Bang J.H., Suslick K.S. Adv. Mater., 2010, 22:1039

[65] Mason T.J. Peters D. In Practical Sonochemistry: Power Ultrasound Uses and Applications; Horwood Publishing: Chichester, 2003

[66] Stock N. Micropor. Mesopor. Mater., 2010, 129:287

[67] Son W.J., Kim J., Kim J., Ahn W.S. Chem. Commun., 2008, 6336

[68] Li Z.Q., Qiu L.G., Su T., Wu Y., Wang W., Wu Z.Y., Jiang X. Mater. Lett., 2009, 63:78

[69] Kim J., Yang S.T., Choi S.B., Sim J., Kim J., Ahn W.S. J. Mater. Chem., 2011, 21:3070

[70] Mueller U., Puetter H., Hesse M., Wessel H. WO 2005/ 049892

[71] Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., Pastre J., J. Mater. Chem., 2016, 16:626

[72] Joaristi A.M., Juan-AlcanÞiz J., Serra-Crespo P., Kapteijn F., Gascon J. Cryst. Growth Des., 2012, 12:3489

[73] Stock N., Biswas S. Chem. Rev., 2012, 112:933

[74] Boldyrev V.V., Tkacova K. J. Mater. Synth. Proc., 2000, 8:121

[75] Kaupp G. CrystEngComm, 2009, 11:388

[76] Lazuen-Garay A., Pichon A., James S.L. Chem. Soc. Rev., 2007, 36:846

[77] Beyer M.K., Clausen-Schaumann H. Chem. Rev., 2005, 105:2921

[78] Frišcic T. J. Mater. Chem., 2010, 20:7599

[79] Schlesinger M., Schulze S., Hietschold M., Mehring M. Microporous Mesoporous Mater., 2010, 132:121

[80] Pichon A., James S.L. CrystEngComm., 2008, 10:1839

[81] Yuan W., Lazuen-Garay A., Pichon A., Clowes R., Wood C.D., Cooper A.I., James S.L. CrystEngComm., 2010, 12:4063

[82] Klimakow M., Klobes P., Th€unemann A.F., Rademann K., Emmerling F. Chem. Mater., 2010, 22:5216

[83] Yang H., Orefuwa S., Goudy A. Microporous Mesoporous Mater., 2011, 143:37

[84] Beldon P.J., F_abi_an L., Stein R.S., Thirumurugan A., Cheetham A.K. Fri_s_ci_c T. Angew. Chem. Int Ed., 2010, 49:9640

[85] Willans C.E., French S., Anderson K.M., Barbour L.J., Gertenbach J.A., Lloyd G.O., Dyer R.J., Junk P.C., Steed J.W. Dalton Trans., 2011, 40:573

[86] Liu L., Wei H., Zhang L., Li J., Dong J. Stud. Surf. Sci. Catal., 2008, 174:459

[87] Himeur F., Stein I., Wragg D.S., Slawin A.M.Z., Lightfoot P., Morris R.E. Solid State Sci., 2010, 12:418

[88] Kim S.H., Yang S.T., Kim J., Ahn W.S. Bull. Korean Chem. Soc., 2011, 32:2783

[89] Zhang J., Wu T., Chen S., Feng P., Bu X. Angew. Chem. Int. Ed., 2009, 48:3486

[90] Lin Z., Slawin A.M.Z., Morris R.E. J. Am. Chem. Soc., 2007, 129:4880

[91] Schoenecker P.M., Belancik G.A., Grabicka B.E., Walton K.S. AIChE J., 2013, 59:1255

[92] Ameloot R., Vermoortele F., Vanhove W., Roeffaers M.B.J., Sels B.F., De Vos D.E., Nature Chem., 2011, 3:382

[93] Witters D., Vergauwe N., Ameloot R., Vermeir S., De Vos D., Puers R., Sels B., Lammertyn J. Adv. Mater., 2012, 24:1316

[94] Kornienko N., Zhao Y., Kley C.S., Zhu C., Kim D., Lin S., Chang C.J., Yaghi O.M., Yang P. J. Am. Chem. Soc., 2015, 137:14129

[95] Lu X.F., Liao P.Q., Wang J.W., Wu J.X., Chen X.W., He C.T., Zhang J.P., Li G.R., Chen X.M. J. Am. Chem. Soc., 2016, 138:8336

[96] Hwang Y.K., Hong D.Y., Chang J.S., Jhung S.H., Seo Y.K., Kim J., Vimont A., Daturi M., Serre C., Ferey G. Angew. Chem., Int. Ed., 2008, 47:4144

[97] Zhu Q.L., Xu Q. Chem. Soc. Rev., 2014, 43:5468

[98] An B., Zhang J., Cheng K., Ji P., Wang C., Lin W. J. Am. Chem. Soc., 2017, 139:3834

[99] Dhakshinamoorthy A., Asiri A.M., Garcia H. Angew. Chem., Int. Ed., 2016, 55:5414 (b) Zeng L., Guo X.Y., He C., Duan C.Y. ACS Catal., 2016, 6:7935 

[100] Xiao J.D., Shang Q.C., Xiong Y.J., Zhang Q., Luo Y., Yu S.H., Jiang H.L. Angew. Chem., Int. Ed., 2016, 55:9389

[101] Horiuchi Y., Toyao T., Saito M., Mochizuki K., Iwata M., Higashimura H., Anpo M., Matsuoka M. J. Phys. Chem. C, 2012, 116:20848

[102] Fu Y.H., Sun D.R., Chen Y.J., Huang R.K., Ding Z.X., Fu X.Z., Li Z.H. Angew. Chem., Int. Ed., 2012, 51:3364

[103] Chi L., Xu Q., Liang X., Wang J., Su X. Small, 2016, 12:1351

[104] Gao Y.W., Li S.M., Li Y.X., Yao L.Y., Zhang H. Appl. Catal. B, 2017, 202:165

[105] Liang R.W., Jing F.F., Shen L.J., Qin N., Wu L. J. Hazard. Mater., 2015, 287:364

[106] Fateeva A., Chater P.A., Ireland C.P., Tahir A.A., Khimyak Y.Z., Wiper P.V., Darwent J.R., Rosseinsky M.J. Angew. Chem., Int. Ed., 2012, 51:7440

[107] An Y., Liu Y.Y., An P.F., Dong J.C., Xu B.Y., Dai Y., Qin X.Y., Zhang X.Y., Whangbo M.H., Huang B.B. Angew. Chem., Int. Ed., 2017, 56:3036

[108] Zeng X., Huang L.Q., Wang C.N., Wang J.S., Li J.T., Luo X.T. ACS Appl. Mater. Interfaces, 2016, 8:20274

[109] Yang C., You X., Cheng J.H., Zheng H.D., Chen Y.C. Appl. Catal. B, 2017, 200:673

[110] Yang Z.W., Xu X.Q., Liang X.X., Lei C., Wei Y.L., He P.Q., Lv B.L., Ma H.C., Lei Z.Q. Appl. Catal. B, 2016, 198:112

[111] Tilgner D., Kempe R. Chem. Eur. J., 2017, 23:3184

[112] Nguyen H.G.T., Mao L., Peters A.W., Audu C.O., Brown Z.J., Farha O.K., Hupp J.T., Nguyen S.T. Catal. Sci. Technol., 2015, 5:4444

[113] Pullen S., Fei H.H., Orthaber A., Cohen S.M., Ott S. J. Am. Chem. Soc., 2013, 135:16997

[114] Wang C., Wang J.L., Lin W.B. J. Am. Chem. Soc., 2012, 134:19895

[115] Zhang Z.M., Zhang T., Wang C., Lin Z.K., Long L.S., Lin W.B. J. Am. Chem. Soc., 2015, 137:3197

[116] Li Q.Y., Ma Z., Zhang W.Q., Xu J.L., Wei W., Lu H., Zhao X.S., Wang X.J. Chem. Commun., 2016, 52:11284

[117] Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J.F., Heurtaux D., Clayette P., Kreuz C., Chang J.S., Hwang Y.K., Marsaud V., Bories P.N., Cynober L., Gil S., Ferey G., Couvreur P., Gref R. Nat. Mater., 2009, 9:172

[118] Horcajada P., Serre C., Maurin G., Ramsahye N.A., Balas F.,  Vallet-Regi M., Sebban M., Taulelle F., Ferey G. J. Am. Chem. Soc., 2008, 130:6774

[119] (a) Liu X.J., Zhang Y.H., Chang Z., Li A.L., Tian D., Yao Z.Q., Jia Y.Y., Bu X.H. Inorg. Chem., 2016, 55:7326 (b) Wang B., Lv X.L., Feng D., Xie L.H., Zhang J., Li M., Xie Y., Li J.R., Zhou H.C. J. Am. Chem. Soc., 2016, 138:6204

[120] Yassine O., Shekhah O., Assen A.H., Belmabkhout Y., Salama K.N., Eddaoudi M. Angew. Chem., Int. Ed., 2016, 55:15879

[121] Feng D., Wang K., Wei Z., Chen Y.P., Simon C.M., Arvapally R.K., Martin R.L., Bosch M., Liu T.F., Fordham S., Yuan D., Omary M.A., Haranczyk M., Smit B., Zhou H.C. Nat. Commun., 2014, 5:5723

[122] Canivet J., Fateeva A., Guo Y., Coasne B., Farrusseng D. Chem. Soc. Rev., 2014, 43:5594

[123] Burtch N.C., Jasuja H., Walton K.S. Chem. Rev., 2014, 114:10575

[124] Wade C.R., Corrales-Sanchez T., Narayan T.C., Dincaˇ M. Ene. Environ. Sci., 2013, 6:2172

[125] Seo Y.K., Yoon J.W., Lee J.S., Hwang Y.K., Jun C.H., Chang J.S., Wuttke S., Bazin P., Vimont A., Daturi M., Bourrelly S., Llewellyn P.L., Horcajada P., Serre C., Ferey G. Adv. Mater., 2012, 24:806

[126] Khutia A., Rammelberg H.U., Schmidt T., Henninger S., Janiak C. Chem. Mater., 2013, 25:790

[127] Liu Y., Moon S.Y., Hupp J.T., Farha O.K. ACS Nano., 2015, 9:12358

[128] Barea E., Montoro C., Navarro J.A.R. Chem. Soc. Rev., 2014, 43:5419

[129] Grant Glover T., Peterson G.W., Schindler B.J., Britt D., Yaghi O. Chem. Eng. Sci., 2011, 66:163

[130] Liu Y., Howarth A.J., Hupp J.T., Farha O.K. Angew. Chem., Int. Ed., 2015, 54:9001

[131] Lee Y.R., Kim J., SeungAhn W. Korean J. Chem. Eng., 2013, 30:1667

[132] Falcaro R., Ricco C., Doherty M., Liang K., Hill A.J., Styles M.J. Chem. Soc. Rev., 2014, 43:5513

[133] Keskin S., Kızılel S. Ind. Eng. Chem. Res., 2011, 50:1799

[134] Chen D.S., Xing H.Z., Wang C.G., Su Z.M. J. Mater. Chem. A, 2016, 4:2657

[135] Chen Y., Wang D., Deng X., Li Z. Catal. Sci. Technol., 2017, 7:4839

[136] Sajjadifar S., Arzehgar Z., Khoshpoori S. J. Inorg. Organometal. Poly. Mater., 2018, 28:837

[137] Soleiman-Beigi M., Arzehgar Z. Synlett, 2018, 29:986

[138] Sajjadifar S., Arzehgar Z., Ghayuri A., J. Chin. Chem. Soc., 2018, 65:205