Document Type: Original Article

Authors

1 Department of Polymer Engineering, South Tehran Branch, Islamic Azad University, 1777613651, Tehran, Iran

2 New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran

3 Polymer Department, Payame Noor University, Tehran, Iran

10.22034/chemm.2018.149668.1094

Abstract

The interaction in the nanoclay is expected to be improved as the result of the amalgamation of hypalon chlorosulfonated polyethylene rubber (CSM) with nanoclay in the presence of compatibilizer agent nature rubber (ENR). Melt intercalation method was also applied to prepare CSM phases. The effect of ENR and nanoclay on the mixture behavior was also detected by scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) contributed to scrutinize the thermal properties of the prepared NR/CSMs. The outcomes of the X-ray diffraction study are compatible with those of thermal analysis. The results indicated that CSM was infixed into nanoclay. Regarding the fact that the amount of the nanoclay content was lower than 12 wt%, Flynn-Wall-Ozawa (F.W.O) and Kissinger–Akahira–Sunose (K.A.S.), methods were applied to specify the energy of the apparent activation of the nano/hypalon systems holding 3, 6, 9 wt% of nano. The upshots demonstrated that increasing the thermal stability of hypalon was directed into boosting the nanoclay content. This divulges that there is an interplay between nanoclay, ENR and hypalon. Comparing to micro-filled ENR/CSM and ENR/CSM cross linked systems, it is predicted to conclude an enhanced thermal stability, higher values of Tg, better dispersion the nanoclay and more polish without any cracks.

Graphical Abstract

Keywords

Main Subjects

[1] Janowska G., Rybin´ski, P. J. Therm. Anal. Calorim., 2008, 91:697

[2] Santhoskumar A.U., Jaya Chitra N. Chem. Method., 2019, 3:83

[3] Gupta S., Chowdhury S.R., Mishra J.K., Das C.K., Patra P.K., Tripathy A.K., Millins W., Banerjee M.S. Mater. Lett., 2000, 46:125

[4] Giannelis E.P. Adv. Mater., 1996, 8:29

[5] Merinska D., Malac Z., Hrnicirik J., Simonik J; Trlica J; Pospisil M; Capkova P; Weiss Z. Antec Conferences, 2001, 47:2166

[6] Wang Z., Ni H., Bian Y., Zhang M., Zhang H. J. appl. Polym. Sci., 2010, 116:2095

[7] Jin F.L., Park S.J. J. Mater. Sci. Eng. A., 2008, 478:402

[8] Tanrattanakul V., Petchkaew A. J. Appl. Polym. Sci., 2006, 99:127

[9] Kotec J., Kenlar I., Studenovsky M., J. Baldrian., Polymer, 2005, 46:4876

[10] Zhao R., Cheng S., Shun Y., Huang Y. J. Appl. Polym. Sci., 2001, 81:3582

[11] Doyle C.D. J. Appl. Polym. Sci., 1962, 6:24.

[12] Ali-Asgari Dehaghi H., Mazinani S., Zaarei D., Kalaee M., Jabari H., Sedaghat N. J. Therm. Anal. Calorim., 2013, 114;184

[13] Friedman H.L. J. Polym. Sci., 1964, 6:183

[14] Ozawa T. J. Therm.  Anal. Calorim., 1970, 2;301

[15] Doyle C.D. J. Appl. Polym. Sci., 1962, 6:639

[16] Callister W.D. Materials science and engineering: an introduction. 4th ed. New York: John Wiley Sons Inc; 1997

[17] Gu Z., Song G., Liu W., Gao J., Dou W., Lu P. J. Appl. Polym. Sci., 2010, 115:3365

[18] Karger-Kocsis J., Wu C.M. Poly. Eng. Sci., 2004, 44:1083

[19] Tripathy A.R., Patra P.K., Sinha J.K., Banerji M.S. J. Appl. Polym. Sci., 2002, 83:937

[20] Varma A.J., Kondapalli P., Deshpande S.V. Polym. Degrad. Stabil., 1999, 63:1

[21] Chailan J.F., Boiteux G., Chauchard J., Pinel B., Seytre G. Polym. Degrad. Stabil., 1995, 47:397

[22] Chowdhury S.R., Das C.K. J. Appl. Polym. Sci., 2000, 78:707

[23] Minsker K.S., Steklova A.M., Zaikov G.E. Polym. Degrad. Stabil., 1990, 28:227

[24] Serageldin M.A., Wang H. Thermochem. Acta, 1988, 125:247

[25] Markovic´ G., Marinovic´-Cincovic´ M., Vodnik V., Radovanovic´ B., Budinski-Simendic´J., Veljkovic O. J. Therm. Anal.  Calorim., 2009, 97:999