Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Author

Department of chemistry, Amirkabir University of Technology, Tehran, Iran

Abstract

Vinylene carbonate (VC) is the most well-known additive for current lithium-ion batteries (LIBs). Low anodic stability or insufficient oxidation stability as a drawback of VC affected LIBs performance, especially in high voltage applications. As computational screening is faster and much less expensive than experimental trial and error testing, by using density functional theory (DFT) computations, phthalimide derivatives are screened as promising solid electrolyte interface (SEI) forming additives in LIBs. Our computational screening comprising frontier orbital energy, binding energy, and redox potentials shows that phthalimide derivatives are promising candidates as SEI-forming additives on graphite anode in ethylene carbonate (EC), and propylene carbonate (PC), based electrolytes. Additionally, four phthalimide derivatives including 3-nitrophthalimide, N-chlorophthalimide, 3,4,5,6-tetrachlorophthalimide, and phthalimide itself, due to their higher anodic stability and also reduction potential compared to VC, can be used as future alternatives of VC for LIBs. 

Graphical Abstract

Phthalimide Derivatives: New Promising Additives for Functional Electrolyte in Lithium-ion Batteries

Keywords

Main Subjects

[1] Nishi Y. J. Power Sources, 2001, 100:101
[2] Haregewoin A.M., Wotango A.S., Hwang B.J. Energy Environ. Sci., 2016, 9:1955
[3] Korepp C., Kern W., Lanzer E.A., Raimann P.R., Besenhard J.O., Yang M., Möller K.C., Shieh D.T., Winter M. J. Power Sources, 2007, 174:637
[4] Zhang Z., Zhang S.S. Rechargeable Batteries; Springer: Switzerland, 2015; p 263
[5] Xu K. Chem. Rev., 2004, 104:4303
[6] Choi N., Chen Z., Freunberger S.A., Ji X., Sun Y.K., Amine K., Yushin G., Nazar L.F., Cho J., Bruce P.G. Angew. Chem. Int. Ed., 2012, 51:9994
[7] Yao W., Zhang Z., Gao J., Li J., Xu J., Wang Z., Yang Y. Energy Environ. Sci., 2009, 2:1102
[8] Zhang S.S. J. Power Sources, 2006, 162:1379
[9] Jow T.R., Xu K., Borodin O., Makoto U. Electrolytes for lithium and lithium-ion batteries; Springer: New York, 2014; p 167
[10] Jung H.M., Park S.-H., Jeon J., Choi Y., Yoon S., Cho J.J., Oh S., Kang S., Han Y.K., Lee H. J. Mater. Chem. A, 2013, 38:11975
[11] Han Y.K., Yoo J., Yim T. RSC Adv., 2017, 7:20049
[12] Han Y.K., Moon Y., Lee K., Huh Y.S. Curr. Appl. Phys., 2014, 14:897
[13] Han Y.K., Lee K., Jung S.C., Huh Y.S. Comput. Theor. Chem., 2014, 1031:64
[14] Han Y.K., Yoo J., Yim T. J. Mater. Chem. A, 2015, 3:10900
[15] Sabastiyan A., Suvaikin M.Y. Adv. Appl. Sci. Res., 2012, 3:45
[16] Kushwaha N., Kaushik D. J. Appl. Pharm. Sci., 2016, 6:159
[17] Kushwaha N., Tripathi A., Kushwaha S.K.S. Der Pharm. Chem., 2014, 6:188
[18] Kümmel S., Kronik L. Rev. Mod. Phys., 2008, 80:3
[19]  Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr.J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
[20] Vosko S. H., Wilk L., Nusair M. Can. J. Phys., 1980, 58:1200
[21] Becke A.D. Phys. Rev. A, 1988, 38:3098
[22] Becke A.D. J. Chem. Phys., 1993, 98:5648
[23] Barone V., Cossi M., Tomasi J. J. Comput. Chem., 1998, 19:404
[24] Zhang S.S., Jow T.R., Amine K., Henriksen G.L. J. Power Sources, 2002, 107:18
[25] Halls M.D., Tasaki K. J. Power Sources, 2010, 195:1472
[26] Chen R., Wu F., Li L., Guan Y., Qiu X., Chen S., Li Y., Wu S. J. Power Sources, 2007, 172:395
[27] Abe K., Miyoshi K., Hattori T., Ushigoe Y., Yoshitake H. J. Power Sources, 2008, 184:449
[28] Park M.H., Lee Y.S., Lee H., Han Y.-K. J. Power Sources, 2011, 196:5109
[29] Klassen B., Aroca R., Nazri M., Nazri G.A. J. Phys. Chem. B, 1998, 102:4795
[30] Borodin O., Behl W., Jow T.R. J. Phys. Chem. C, 2013, 117:8661
[31] Trasatti S. Pure Appl. Chem., 1986, 58:955
[32] Leggesse E.G., Jiang J.C. J. Phys. Chem. A, 2012, 116:11025