Document Type: Review Article

Authors

1 Amrita Institute of Nanoscience and Molecular Medicine, AIMS Ponekkara P. O. Kochi, Kerala, India – 68204

2 Division of Biological & Life Sciences, Ahmedabad University, Ahmedabad, Gujarat, India-380009

3 Dr. A. P. J. Abdul Kalam Research Laboratory, Department of Physics, Yashavantrao Chavan Institute of Science, Satara- 415001

4 Department of Chemistry, Yashavantrao Chavan Warana College, Warananager, Kolhapur, Maharashtra-416113

Abstract

The applications of copper nanoparticle are gradually increased because of Cu is inexpensiveness and high abundance in nature. However, synthesis of copper nanoparticles is very challenging because of transformation from Cu nanoparticles into copper oxide in presence of air, though colloidal Cu NPs have significantly catalytic activity and biological applications. This review article exploring the synthesis of copper nanoparticles by different methods such as wet chemical, microemulsion, micro-oven assisted and thermal decomposition, moreover, explains about green and biological modes of synthesis. Some of the characterization methods for copper nanoparticle have discussed seem, electron microscopes and X-ray spectroscopy. Furthermore, applications of degrading treatment of textile effluents containing methylene blue dye and expose the mechanism of degradation. The copper nanoparticles show a catalytic activity in organic transformation, while have mentioned the biological application for anti-microbial and wound healing of copper NPs. 

Graphical Abstract

Keywords

Main Subjects

[1] Senanayake S.D., Stacchiola D., Rodriguez J.A.  Acc. Chem. Res., 2013, 46:1702                  

[2]  Bordiga S., Groppo E., Agostini G., Van Bokhoven J., A Lamberti A. Chem. Rev., 2013, 113:1736

[3] Gawande M.B., Goswami A., Felpin F.X., Asefa T., Huang X., Silva R., Zou X., Zbroil R., Varma R.S. Chem Rev., 2016, 116:3722

[4] Camacho-Flores B.A., Martínez-Álvarez O., Arenas-Arrocena M.C., Garcia-Contreras R., Argueta-Figueroa L., de la Fuente-Hernández J., Acosta-Torres L.S., J. Nanomater., 2015, 2015:1

[5] Dang T.M.D., Le T.T.T., Fribourg-Blanc E., & M. C. Adv. Natur. Sci.: Nanosci. Nanotechnol., 2011, 2:1

[6] Godymchuk A., Frolov G., Gusev A., Zakharova O., Yunda E., Kuznetsov D., Kolesnikov E. IOP Conference Series: Mater. Sci. Eng., 2015, 98:1

[7] Pantidos N., Horsfall L.E. J. Nanomedic. Nanotechnol., 2014, 5:3

[8] Kim Y.H., Lee D.K., Jo B.G., Jeong J.H., Kang Y.S. Coll. Surfaces A: Physicochem. Eng. Aspects, 2016, 284:364

[9] Chatterjee A.K., Chakraborty R., Basu T. Nanotechnol., 2014, 25:1

[10] Deryabin D.G., Aleshina E.S., Vasilchenko A.S., Deryabina T.D., Efremova L.V., Karimov F., Korolevskaya L.B. Nanotechnolog. Russia, 2013, 8:402

[11] Ramyadevi J., Jeyasubramanian K., Marikani A., Rajakumar G., Rahuman A.A. Mater. Lett., 2012,71:114

[12] Palza H. Int. j. molecule. Sci., 2015, 16:2099

[13] Banerjee A., Blasiak B., Pasquier E., Tomanek B., Trudel S. RSC Adv., 2017, 7:38125

[14] Liu C.M., Guo L., Xu H.B., Wu Z.Y., Weber J. Microelect. Eng., 2003,66:107

[15] Bakshi M.S. Cryst. Growth Des., 2015, 16:1104

[16] Wu S.H., Chen D.H. J. colloid interface Sci., 2004, 273:165

[17] Lisiecki I., Billoudet F., Pileni M.P. J. Phys. Chem., 1996,100:4160

[18] Nakamura T., Tsukahara Y., Sakata T., Mori H., Kanbe Y., Bessho H., Wada Y. Bull. Chem. Soc. Jap., 2007,80:224

[19] Yu W., Xie H., Chen L., Li Y., Zhang C. Nanoscale Res. Lett., 2009, 4:465

[20] Zhang H.X., Siegert U., Liu R., Cai W.B. Nanoscale Res. Lett., 2009,  4:705

[21] Dar M.I., Sampath S., Shivashankar S.A. J. Mater. Chem., 2012,22:22418

[22] Chen Q., Shen X., Gao H. J. colloid  interface Sci., 2007, 308:491

[23] Solanki J.N., Sengupta R., Murthy Z.V.P. Solid State Sci., 2010, 12:1560

[24] Betancourt-Galindo R., Reyes-Rodriguez P.Y., Puente-Urbina B.A., Avila- Orta C.A., Rodrígue Fernández O.S., Cadenas-Pliego G., García-Cerda L.A. J. Nanomater., 2014, 10:1

[25] Liu Q.M., Yasunami T., Kuruda K., Okido M. Transact. Nonferrous Metal. Soc. China, 2012, 22:2198

[26] Yong P., Rowson N.A., Farr J.P., Harris I.R., Macaskie L.E. Biotechnol. Bioeng., 2002, 80:369

[27] Wiley B., Herricks T., Sun Y., Xia Y. Nano Letters, 2004, 4:1733

[28] Pawar D., shaikh S., Shulaksana D., kanawade R. Int. J. Pharm. Pharmaceut. Sci., 2016, 203

[29] Kaur P., Thakur R., Chaudhury A. Green Chem. Lett. Rev., 2016,9:33

[30] Yallappa S., Manjanna J., Sindhe M.A., Satyanarayan N.D., Pramod S.N., Nagaraja K. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 110:108

[31] Kulkarani V.D., Kulkarni P.S. Int. J. Chem. Stud., 2013,1:1

[32] Lee H.J., Lee G., Jang N.R., Yun J.H., Song J.Y., Kim B.S. Nanotechnology, 2011, 1:371

[33] Kathad U., Gajera H. Int. J. Pharm. Bio. Sci., 2014, 5:533

[34] Din M.I., Rehan R. Analy. Lett., 2017, 50:50

[35] Balentine D.A., Wiseman S.A., Bouwens L.C. Critical Rev. Food Sci. Nutrit., 1997., 37:693

[36] Graham H.N. Prevent. medic., 1992, 21:334

[37] Chaturvedula V.S.P., Prakash I. J. Medic. Plants Res., 2011, 5:2110

[38] Keihan A.H., Veisi H., Veasi H. Appl. Organometal. Chem., 2016, 31:1

[39] Dinda G., Halder D., Vazquez-Vazquez C., Lopez-Quintela M.A., Mitra A. J. Surf. Sci. Technol., 2015, 31:117

[40] Suárez-Cerda J., Espinoza-Gómez H., Alonso-Núñez G., Rivero I.A., Gochi- Ponce Y., L. Z. & Flores-44. López, J. Saudi Chem. Soc., 2017, 21:341

[41] Manikandan A., Sathiyabama M. J.  Nanomedic. Nanotechnol., 2015, 6:1

[42] Shinde S., Ingle A.P., Gade A., Rai M. World J. Microbiol. Biotechnol., 2015, 31:865

[43] He S., Guo Z., Zhang Y., Zhang S., Wang J., Gu N. Materials Letters,2007, 61:3984

[44] Varshney R., Bhadauria S., Gaur M.S., M. S. Nano Biomedic. Eng., 2012, 4:99

[45] Ramanathan R., Bhargava S., Bansal V. Chem. Eng. Better World , 2011, 1991

[46] Pavani K.V., Srujana N., Preethi G., Swati T. Lett. Appl. Nanobiosci., 2013,2:110

[47] Honary S., Barabadi H., Gharaei-Fathabad E., Naghibi F. Dig J Nanomater Bios, 2012,7:999

[48] S. Bhatia S. Natural Polymer Drug Delivery Systems. Springer International Publishing, 2016. 33.

[49] Jores K., Mehnert W., Drechsler M., Bunjes H., Johann C., Mäder K. 2004, 95:217

[50] Habibi M.H., Kamrani R., Mokhtari R. Microchim. Acta, 2010, 171:91

[51] Aslan E., Patir I.H., Ersoz M. Chem. A Eur. J., 2015,21:4585

[52] Sahai A., Goswami N., Kaushik S.D., Tripathi S. Appl. Surface Sci., 2016, 390:974

[53] Huang C., liu Q., Fan W., Qiu X. Sci. Rep., 2015, 5:16736

[54] Diaz-Droguett D.E., Espinoza R., Fuenzalida V.M. Appl. Surface Sci., 2011, 257:4597

[55] Sinha T., Ahmaruzzaman M. Environ. Sci. pollut. Res. Int., 2015, 22:20092

[56] Nandivada H., Jiang X., Lahann J. Adv. Mater., 2007,19:2197

[57] Jang S.P., Choi S.U. Appl. Phys. Lett., 2001, 84:4316

[59] A. K. Singh A.K. Defence Sci. J., 2008, 58:600

[60] Younes H., Christensen G., Li D., Hong H., Ghaferi A.A. J. Nanofluids, 2015, 4:107

[61] Suleimanov B.A., Abbasov H.F. Russian J. Phys. Chem. A, 2016, 90:420

[62] Xu Q. Zhao Y., Xu J.Z., Zhu J.J. Sensors Actuators B: Chem., 2006, 114:379

[63] Luo J., Jiang S., Zhang H., Jiang J., Liu X. Anal. Chim. Acta., 2012, 709:47

[64] Mohamed M.M., Fouad S.A., Elshoky H.A., Mohammed G.M., Salaheldin T.A. Int. J. Vet. Sci. Med., 2017, 5:23

[65] Zhou Y., Kong Y., Kundu S., Cirillo J.D., Liang H. J. nanobiotechnol., 2012, 10:19

[66] Karaman D.Ş., Sarwar S., Desai D., Björk E.M., Odén M., Chakrabarti P., Chakraborti S. J. Mater. Chem. B, 2016, 4:3292

[67] Wei Y., Chen S., Kowalczyk B., Huda S., Gray T.P., Grzybowski B.A. J. Phys. Chem. C, 2010, 114:15612

[68] Meyer T.J., Ramlall J., Thu P., Gadura N. Int. J. Biological, Biomolecular, Agricultural, Food Biotechnolog. Eng., 2015, 9:274

[69] Azam A., Ahmed A.S., Oves M., Khan M.S., Memic A. Int. J. Nanomedicine, 2012, 7:3527

[70] Amro N.A., Kotra L.P., Wadu-Mesthrige K., Bulychev A., Mobashery S., Liu G.Y. Langmuir,  2000, 16:2789

[71] Applerot G., Lellouche J., Lipovsky A., Nitzan Y., Lubart R., Gedanken A., Banin, E. Small, 2012 8:3326

[72] Tran N., Mir A., Mallik D., Sinha A., Nayar S., Webster T.J., Int. J. Nanomedicine, 2010, 5:277

[73] Reddy K.M., Feris K., Bell J., Wingett D.G., Hanley C., Punnoose A. Appl. Phys. Lett., 2007, 90:213902

[74] Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. Nanomedicine: NBM, 2007, 3:95

[75] Ruparelia J.P., Chatterjee A.K., Duttagupta S.P., Mukherji S. Acta Biomater., 2008,4:707

[76] Wu X., Ye L., Liu K., Wang W., Wei J., Chen F., Liu C. Biomed. Mater., 2009, 4:045008

[77] Raffi M., Mehrwan S., Bhatti T.M., Akhter J.I., Hameed A., Yawar W., Hasan M.M. Annals Microbiol., 2010, 60:75

[78] Jia B., Mei Y., Cheng L., Zhou J., Zhang L. ACS Appl. Mater. Interfaces, 2012,4:2897

[79] Villanueva M.E., Diez A.M.D.R., González J.A., Pérez C.J., Orrego M., Piehl L., Tevas S., Copello G.J. ACS Appl. Mater. Interfaces, 2016, 8:16280.

[80] Sehmi S.K., Noimark S., Weiner J., Allan E., MacRobert A.J., Parkin I.P. ACS Appl. Mater. Interfaces 2015,7:22807

[81] Raju K.S., Alessandri G., Ziche M., Gullino P.M. J. National Cancer Institute, 1982, 69:1183

[82] Borkow G. Property of Cupron Inc,, 2004, 1.

[83] Sánchez-Sanhueza G., Fuentes-Rodríguez D., Bello-Toledo H. Int. J. Odontostomatol., 2016, 10:547

[84] Tiwari M., Jain P., Hariharpura R.C. medicine, 2005, 26:268

[85] Cao G., Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific, 2004

[86] Suryanarayana C., Norton M.G., Microsc. Microanal., 1999, 4:513