Impact Factor: 5.6     h-index: 27

Document Type : Review Article

Authors

1 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

2 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria

3 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

4 Department of Chemistry, Faculty of Physical Sciences, Modibbo Adama University of Technology, Yola, Nigeria

10.22034/chemm.2018.150142.1096

Abstract

The global quest for reliable sources of energy has led to the development of Organic solar cells (OSCs)/ Organic photovoltaics (OPVs). Over the past few years, they have shown great potentials and use as low cost devices for conversion of solar energy. OSCs are designed from different interface layers from different materials which form a major determinant for their energy conversion efficiency. The recent development in the modifications in design and engineering of these interface materials have shown increased power conversion efficiency (PCE%) of Organic photovoltaics. Interface materials are conductors, semiconductors or non-conductors which provide selective contact for carriers, determine polarity and acts as protective layers. This review discusses different materials which are used as interface materials as well as their structure and engineering.

Graphical Abstract

Different Interface Engineering in Organic Solar Cells: A Review

Keywords

Main Subjects

[1] Pulfrey L.D., Photovoltaic Power Generation. New York: Van Nostrand Reinhold Co. 1978
[2] Krebs F.C., Espinosa N., Hosel M., Sondergaard R.R., Jorgensen M. Adv. Mater., 2014, 26:29
[3] Huang J., Wang H., Yan K., Zhang X., Chen H., Li C.Z., Yu J. Adv. Mater., 2017, 29:1606729
[4] Kong T., Wang H., Liu X., Yu J., Wang C. IEEE J. Photovolt., 2017, 7:214
[5] Xing S., Wang H., Kong T., Yu J., Jiang J., Wang C. IEEE J. Photovolt., 2017, 7:1058
[6] Ono L.K., Leyden M.R., Wang S., Qi Y. J. Mater. Chem. A, 2016, 4:6693
[7] Wang Y., Li S., Zhang P., Liu D., Gu X., Sarvari H., Ye Z., Wu J., Wang Z., Chen Z.D. Nanoscale, 2016, 8:19654
[8] Zhao W., Qian D., Zhang S., Li S., Inganas O., Gao F., Hou J. Adv. Mater., 2016, 28:4734
[9] Zhou D., Cheng X., Xu H., Yang H., Liu H., Wu F., Chen L., Chen Y. J. Mater. Chem. A, 2016, 4:18478
[10] Gil-Escrig L., Momblona C., Sessolo M., Bolink H.J. J. Mater. Chem. A, 2016, 4:3667
[11] Huang L.B., Su P.Y., Liu J.M., Huang J.F., Chen Y.F., Qin S., Guo J., Xu Y.W., Su C.Y. J. Power Sourc., 2018, 378:483
[12] Choy W.C.H., Zhang D. Small, 2016, 12:416
[13] Walker B., Choi H., Kim J.Y. Curr. Appl. Phys., 2017, 17:370
[14] Gollu S.R., Sharma R., Srinivas G., Kundu S., Gupta D. Org. Electron., 2016, 29:79
[15] Chueh C.C., Crump M., Jen A.K.Y. Adv. Funct. Mater.,2016, 26:321
[16] Zhao W., Li S., Yao H., Zhang S., Zhang Y., Yang B., Hou J. J. Am. Chem. Soc., 2017, 139:7148
[17] Kawashima K., Fukuhara T., Suda Y., Suzuki Y., Koganezawa T., Yoshida H., Ohkita H., Osaka I., Takimiya K. J. Am. Chem. Soc., 2016, 138:10265
[18] Lee J., Sin D.H., Moon B., Shin J., Kim H.G., Kim M., Cho K. Energy Environ. Sci., 2017, 10:247
[19] Huang J., Carpenter J.H., Li C.Z., Yu J.S., Ade H., Jen A.K.Y. Method. Adv. Mater., 2016, 28:967
[20] Nian L., Chen Z., Herbst S., Li Q., Yu C., Jiang X., Dong H., Li F., Liu L., Würthner F., Chen J., Xie Z., Ma Y. Adv. Mater., 2016, 28:7521
[21] Jin Y., Chen Z., Xiao M., Peng J., Fan B., Ying L., Zhang G., Jiang X.F., Yin Q., Liang Z., Huang F., Cao Y. Energy Mater., 2017, 7:1700944
[22] Liu X., Xu R., Duan C., Huang F., Cao Y. J. Mater. Chem. C, 2016, 4:4288
[23] Li Z., Yang D., Zhao X., Li Z., Zhang T., Wu F., Yang X. RSC Adv., 2016, 6:101645
[24] Dong S., Hu Z., Zhang K., Yin Q., Jiang X., Huang F., Cao Y. Adv. Mater.,2017, 29:1701507
[25] Bernede J.C., AIP Conf. Proc., 2011, 1391:9
[26] Chen D., Zhang C., Nanostructured Solar Cells (chapter 8: Interface Engineering and Electrode Engineering for Organic Solar Cells) 2018, pp.161, DOI: 10.5772/65312
[27] Borse K., Sharma R., Sagar H.P., Pininti A.R., Gupta D., Yella A. Org. Electron., 2016, 41:280
[28] Jin F., Su Z., Chu B., Cheng P., Wang J., Zhao H., Gao Y., Yan X., Li W. Sci. Report., 2016, 6:26262
[29] Gil-Escrig L., Momblona C., Forgács D., Pla S., Fernández-Lázaro F., Sessolo M., Sastre-Santos A., Bolink H.J. Org. Electron.,  2016, 37:396
[30] Zheng D., Zhao L., Fan P., Ji R., Yu J. Nanomaterials, 2017, 7:233
[31] Cao B., He X., Fetterly C.R., Olsen B.C., Luber E.J., Buriak J.M. ACS Appl. Mater. Interfaces., 2016, 8:1823
[32] Chang S.C. Int. J. Electrochem. Sci., 2016, 11:5819
[33] Xu W., Yan C., Kan Z., Wang Y., Lai W.Y., Huang W. ACS Appl. Mater. Interfaces., 2016, 8:14293
[34] Ullah I., Karim Shah S., Wali S., Hayat K., Khattak S.A., Khan A. Mater. Res. Expres., 2017, 4: 125505
[35] Xiaodong Li Liu X., Zhang W., Wang H.Q., Fang J. Chem. Mater., 2017, 29:4176
[36] Yang Z., Zhang T., Li J., Xue W., Han C., Cheng Y., Qian L., Cao W., Yang Y., Chen S. Scientific Report., 2017, 7:9571
[37] Al-hashimi M.K., Kadem B.Y., Hassan A.K. J. Mater. Sci. Mater. Electron., 2018, 29:7152
[38] Cho N., Mol. Cryst. Liquid Cryst., 2017, 655:159
[39] Upama M.B., Elumalai N.K., Md Mahmud A., Wright M., Wang D., Xu C., Haque F., Chan K.H., Uddin A. Appl. Surface Sci.,  2017, 416:834
[40] Wu Z., Sun C., Dong S., Jiang X.F., Wu S., Wu H., Yip H.L., Huang F., Cao Y. J. Am. Chem. Soc., 2016, 138:2004
[41] Wang J., Lin K., Zhang K., Jiang X.F., Mahmood K., Ying L., Huang F., Cao Y. Adv. Energy Mater., 2016, 6:1502563
[42] Wang Z., Zheng N., Zhang W., Yan H., Xie Z., Ma Y., Huang F., Cao Y. Adv. Energy Mater.,2017, 7:1700232.
[43] Zhang K., Huang F., Cao Y. Acta Polym. Sin., 2017, 9:1400
[44] Xu R., Zhang K., Liu X., Jin Y., Jiang X.F., Xu Q.H., Huang F., Cao Y. ACS Appl. Mater. Interfaces., 2018, 10:1939
[45] Chien H.T., Pölzl M., Koller G., Challinger S., Fairbairn C., Baikie I., Kratzer M., Teichert C., Friedel B., Surfaces Interfaces, 2017, 6:72
[46] Sivakumar G., Pratyusha T., Gupta D., Shen W., Mater. Today Proceed., 2017, 4:6814
[47] Wijeyasinghe N., Tsetseris L., Regoutz A., Sit W.Y., Fei Z., Du T., Wang X., McLachlan M.A.,  Vourlias G., Patsalas P.A., Payne D.J., Heeney M., Anthopoulos T.D. Adv. Funct. Mater., 2018, 28:1707319
[48] Beliatis M.J., Helgesen M., García‐Valverde R., Corazza M., Roth B., Carlé J.E., Jørgensen M., Krebs F.C., Gevorgyan S.A. Adv. Eng. Mater., 2016, 18:1494
[49] Rafique S., Abdullah S.M., Alhummiany H., Abdel-wahab M.Sh., Iqbal J., Sulaiman K., J. Phys. Chem. C, 2017, 121:140
[50] Cheng J., Zhang H., Zhao Y., Mao J., Li C., Zhang S., Sing K., Jianhui W., Wallace H., Choy C.H. Adv. Funct. Mater., 2018, 28:1706403