Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran

10.33945/SAMI/CHEMM.2019.5.4

Abstract

The main objective of this work is to study the sensivity of pristine, Al, P and Al & P doped Ga12N12 to adsorb phosgene (COCl2) molecule. The interaction of COCl2 from O, C and Cl sites on the surface of Ga12N12 is investigated by applying the density functional theory (DFT) at the cam-B3LYP/6-31G(d) level of theory.  The geometrical and electrical structures, quantum descriptive, thermodynamic parameters, solvent effect, atom in molecule theory (AIM), natural bond orbital (NBO), and the reduced density gradient (RDG) are calculated at the above level of theory. The calculated results indicate that the adsorption of COCl2 on the surface of pristine and Al, P and Al & P doped Ga12N12 is exothermic, as well as Al-doped Ga12N12 is more favorable than P and Al & P doped. The recovery time results for adsorption of COCl2 from O site on the surface of Ga12N12, Al-Ga11N12, Ga12N11P and Al-Ga11N11P are 0.103, 4.69×10-7, 3.81×10-12 and 4.31×10-7 respectively. As a result, these nanoclusters can be used as sensor devices toward COCl2 molecule.
The deformation energy results reveal that the structural change of Ga12N12 and COCl2 at all adsorption states are not significant. The AIM, RDG and NBO results demonstrate that the intermolecular interaction from O site of COCl2 on the surface of pristine, Al, P and Al & P doped Ga12N12 is stronger than C and Cl atoms sites of COCl2 as it is an electrostatic attractive type.










The main objective of this work is to study the sensivity of pristine, Al, P and Al & P doped Ga12N12 to adsorb phosgene (COCl2) molecule. The interaction of COCl2 from O, C and Cl sites on the surface of Ga12N12 is investigated by applying the density functional theory (DFT) at the cam-B3LYP/6-31G(d) level of theory.  The geometrical and electrical structures, quantum descriptive, thermodynamic parameters, solvent effect, atom in molecule theory (AIM), natural bond orbital (NBO), and the reduced density gradient (RDG) are calculated at the above level of theory. The calculated results indicate that the adsorption of COCl2 on the surface of pristine and Al, P and Al & P doped Ga12N12 is exothermic, as well as Al-doped Ga12N12 is more favorable than P and Al & P doped. The recovery time results for adsorption of COCl2 from O site on the surface of Ga12N12, Al-Ga11N12, Ga12N11P and Al-Ga11N11P are 0.103, 4.69×10-7, 3.81×10-12 and 4.31×10-7 respectively. As a result, these nanoclusters can be used as sensor devices toward COCl2 molecule.





 

Graphical Abstract

The AIM, RDG, NBO, Quantum and Structural Study of Adsorption of Phosgene Gas on the Surface of Pristine and Al, P Doped Ga12N12 Nano Cluster: A DFT Method

Keywords

Main Subjects

[1]  Schneider W., Diller W. Phosgene, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2005
[2] Borak J., Diller W.F. J. Occupat. Environt. Med., 2001, 43:110
[3] U.S. Environmental Protection Agency. Health Assessment Document for Phosgene, Office of Research and Development, Research Triangle Park, NC. 1986.
[4] U.S. Department of Health and Human Services. Hazardous Substances Data Bank (HSDB, online database). National Library of Medicine, National Toxicology Information Program, Bethesda, MD. 1993
[5] Gift J., McGaughy R., Sonawane, B. Toxicological review of phosgene. U.S., Environmental Protection Agency, Washington, DC, 2005
[6] Shahabi M., Raissi H. J. Incl. Phenom. Macrocycl. Chem., 2016, 86:305
[7]  Kumar D., Verma V., Dharamvir K., Bhatti H.S. Model. Mater. Struct., 2015, 11:2
[8]  Liu B., Bando Y., Wang M., Tang C., Mitome M., Golberg D. Nanotechnology., 2009, 20:185705
[9]  Zhang J., Meguid S.A. Nano. Energy., 2015, 12:322
[10] Colussi M.L., Baierle R.J., Miwa R.H. J. Appl. Phys., 2008, 104:033712
[11] Srivastava A., Khan M.I., Tyagi N., Swaroop Khare P. Sci. World J., 2014, 2014:984591
[12] Valedbagi S., Mohammad Elahi S., Abolhassani M.R., Fathalian A., Esfandiar A. Opt. Mater. (Amst)., 2015, 47:44
[13] Chandiramouli R. Struct. Chem., 2015, 26:375
[14] Tang Q., Cui Y., Li Y., Zhou Z., Chen Z. J. Phys. Chem. C., 2011, 115:1724
[15] Beheshtian J., Kamfiroozi M., Bagheri Z., Peyghan A.A. Chin. J. Chem. Phys., 2012, 25:60
[16] Beheshtian J., Bagheri Z., Kamfiroozi M., Ahmadi A. Microelectron. J., 2011, 42:1400
[17] Beheshtian J., Kamfiroozi M., Bagheri Z., Ahmadi A. Comput. Mater. Sci., 2012, 54:115
[18] Zhang J., Meguid S.A. Nano Energy., 2015, 12:322
[19] Goldberger J., He R., Zhang Y., Lee S., Yan H., Choi H.J., Yang P. Nature., 2003, 422:599
[20] Lee S.M., Lee Y.H., Hwang Y.G., Elsner J., Porezag D., Frauenheim T. Phys. Rev. B., 1999, 60:7788
[21] Zhang M., Su Z.M., Yan L.K., Qiu Y.Q., Chen G.H., Wang R.S. Chem. Phys. Lett., 2005, 408:145
[22] Yang M., Shi J., Zhang M., Zhang S., Bao Z., Luo S., Zhou T. C., Zhu T.,Li X., Li J. Mater. Chem. Phys., 2013, 138: 225
[23] Khaddeo K.R., Srivastava A., Kurchania R. J. Comput. Theor. Nanosci., 2013, 10:2066
[24] Park Y.S., Lee G., Holmes M.J., Chan C.C.S., Reid B.P.L., Alexander-Webber J.A., Nicholas R.J., Taylor R.A., Kim K.S., Han S.W., Yang W., Jo Y.,Kim J., Im H. Nano Lett., 2015, 15:4472
[25] Moradian R., Azadi S., Farahani S.V. Phys. Lett. A., 2008,372:6935
[26] Seif A., Ahmadi T.S., Bodaghi A., Hosseini  J. J. Mole. Struct. (THEOCHEM), 2009, 911:19
[27] Chen G.X., Zhang Y. , Wang D.D., Zhang J.M. J. Mole. Struct. (THEOCHEM), 2010, 956:77
[28] Sun Q., Selloni A., Myers T.H., Alan Doolittle W. Phys. Rev. B., 2006, 73:155337
[29] Sun Q., Selloni A., Myers T.H., Alan Doolittle W. Phys. Rev. B., 2006, 74:195317
[30] Rosa A.L., Neugebauer J. Phys. Rev. B., 2006, 73:205314
[31] Shahzad Khan M., Srivastava A. J. Electroanaly. Chem., 2016, 775:243
[32] Rezaei‑Sameti M., Moradi F. J. Incl. Phenom. Macrocycl. Chem., 2017, 88:209
[33] Rezaei‒Sameti M. Arabian J. Chem., 2015, 8:168
[34] Rezaei-Sameti M., Behbahani H. J. Phys. Chem. Res., 2018, 6:31
[35] Rezaei-Sameti M., Zanganeh F. J. Sulfur. Chem., 2017, 38:384
[36] Becke A.D. J. Chem. Phys., 1993, 98:5648
[37] Lee C., Yang W., Parr R.G. Phys. Rev. B., 1988, 37:785
[38] Yanai T., Tew D.P., Handy N.C. Chem. Phys. Lett., 2004, 393:51
[39] Frisch M.J., et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009
[40] Boys F.S., Bernardi F. Mol. Phys., 1970, 19:553
[41] James C., Amalraj A., Reghunathan R., Hubert Joe I., Jaya Kumar V.S. J. Raman. Spect., 2006, 37:1381
[42] Parr R.G., Pearson R.G. J. Am. Chem. Soc., 1983, 105:7512
[43] Jensen W.B. J. Chem. Educ., 1996, 73:11
[44] Morell C., Labet V., Grand A., Chermette H. Phys. Chem.Chem. Phys., 2009, 11:3417
[45] Pearson R.G. J. Org. Chem., 1989, 54:1423
[46] Zhou Z., Parr R.G. J. Am. Chem. Soc., 1990, 112:5720
[47] Faust W.L. Science., 1989, 245:37
[48]Pearson R.G. J. Am. Chem. Soc., 1985, 107:6801
[49] Parr R.G., Chattaraj P.K. J. Am. Chem. Soc., 1991, 113:1854
[50] Glendening E.D., Reed A.E., Carpenter J.E., Weienhold F.NBO, Version 3.1. University of Wisconsin, Madison, 1996
[51] Murray J.S., Sen K., Molecular electrostatic potentials conceptsand applications. Elsevier, Amsterdam, 1996
[52] Bader R.F.W., Atoms in Molecules: A Quantum Theory. Oxford University Press, New York 1990
[53] Contreras-Garcia J., Johnson E., Keinan S., Chaudret R., Piquemal J., Beratan D., Yang W. J. Chem. Theory. Comput., 2011, 7:625
[54] Johnson E.R., Keinan S., Mori‒Sanchez P., Contreras‒Garcia J., Cohen A.J., Yang W. J. Am. Chem. Soc., 2010, 132:6498