Lithium–functionalization of Pyrrole–n–carboxylic Acids (n=1, 2, 3)

Document Type: Original Article

Authors

1 Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

10.33945/SAMI/CHEMM.2019.6.5

Abstract

Functionalization processes of neutral and ionic forms of the singular lithium element (Li/Li+) by the pyrrole–n–carboxylic acid (PnCA; n=1, 2, 3) have been investigated based on the quantum chemical density functional theory (DFT) calculations. To this aim, molecular and atomic scales parameters have been obtained for the optimized structures of original and Li/Li+ functionalized complex models of PnCA. The results have indicated that the structural shapes and the O8 dominant atom properties are similar to P1CA and P3CA models but different from P2CA model. Moreover, the adsorption energies have indicated that the P3CA model could be considered as the best choice for both of Li and Li+ functionalization processes. The orbital distribution patterns and dipole moments have also approved the Li/Li+ functionalization by the PnCA species. As a result, the PnCA species could be suggested as suitable adsorbents of neutral and ionic forms of the Li element.

Graphical Abstract

Lithium–functionalization of Pyrrole–n–carboxylic Acids (n=1, 2, 3)

Keywords

Main Subjects


[1] Wang Y., Liu B., Li Q., Cartmell S., Ferrara, S., Deng Z.D., Xiao J. J. Power Sources, 2015, 286:330

[2] Fotouhi A., Auger D.J., Propp K., Longo S., Wild M. Renew. Sust. Energ. Rev., 2016, 56:1008

[3] Wang C., Fu K.K., Dai J., Lacey S.D., Yao Y., Pastel G., Xu L., Zhang J., Hu L. Nature Commun., 2017, 8:15609

[4] Sasaki Y., Handa M., Sekiya S., Kurashima K., Usami K. J. Power Sources, 2001, 97:561

[5] Che H., Liu A., Liang S., Zhang X., Hou J. Superlatt. Microstruct. 2015, 83:538

[6] Pang Z., Shi X., Wei Y., Fang D. Carbon, 2016, 107:557

[7] Tang J., Li Y., Chen X., Xu Y., He H., Zhang R., Lu P. J. Comput. Theor. Nanosci., 2016, 13:8765

[8] Ren Z., Gao P.X. Nanoscale, 2014, 6:9366

[9] Bagheri Z., Mirzaei M., Hadipour N.L., Abolhassani M.R. J. Comput. Theor. Nanosci., 2008, 5:614

[10] Mirzaei, M. Monatsh. Chem., 2009, 140:1275

[11] Mirzaei M., Hadipour N.L., Abolhassani M.R. Z. Naturforsch. A, 2007, 62:56

[12] Kumar R., Al–Dossary O., Kumar G., Umar A. Nano–Micro Lett., 2015, 7:97

[13] Shi W., Lu C., Yang S., Deng J. Comput. Theor. Chem., 2017, 1115:169

[14] Denis P.A. Chem. Phys. Lett., 2017, 672:70

[15] Galashev A.Y., Ivanichkina K.A. Phys. Lett. A, 2017, 381:3079

[16] Malhi G.S., McAulay C., Gershon S., Gessler D., Fritz K., Das P., Outhred T. Bipol. Disord., 2016, 18:102

[17] Swain B. Separ. Purific. Technol., 2017, 172:388

[18] Hider R.C., Ma Y. Basic Principles of Metal Chelation and Chelator Design. In Metal Chelation in Medicine, The Royal Society of Chemistry: United Kingdom, 2016, doi.org/10.1039/9781782623892-00024

[19]  Ghazi Z.A., Zhu L., Wang H., Naeem A., Khattak A.M., Liang B., Khan N.A., Wei Z., Li L., Tang Z. Adv. Energy Mater., 2016, 6:1601250

[20] Park H., Siegel D.J. Chem. Mater., 2017, 29:4932

[21] Lamsabhi A.M., Alcami M., Mo O., Yanez M., Tortajada J. ChemPhysChem, 2004, 5:1871

[22] Lamsabhi A. M., Alcami M., Mo O., Yanez M. ChemPhysChem, 2003, 4:1011

[23] Świderski G., Wojtulewski S., Kalinowska M., Świsłocka R., Lewandowski W. J. Mol. Struct., 2011, 993:448

[24] Liang Y., Noda L.K., Sala O. J. Mol. Struct. 2000, 554:271

[25] Joshi S.D., More U.A., Kulkarni V.H., Aminabhavi T.M. Curr. Organ. Chem., 2013, 17:2279

[26] Singh D.K., Srivastava S.K., Ojha A.K., Asthana B.P. Spectrochim. Acta Part A, 2008, 71:823

[27] Harismah K., Mirzaei M., Ghasemi N., Nejati M. Z. Naturforsch. A, 2017, 73:51

[28] Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., B. Mennucci, Petersson G.A., Nakatsuji H., Caricato M.,  Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts  R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Gaussian, Inc.: Pittsburgh, PA, 2009

[29] Amirabadi A.H.R., Mirzaei M. Iran. Chem. Commun., 2019, 7:223

[30] Munir S., Begum M., Nosheen. Asian J. Green Chem., 2019, 3:91

[31] Mosallanejad B. Chem. Methodol., 2019, 3:261

[32] Van Duijneveldt F.B., van Duijneveldt-van de Rijdt J.G.C.M., van Lenthe J.H. Chem. Rev., 1994, 94:1873

[33] Koopmans T. Physica, 1934, 1:104

[34] Aramideh M., Mirzaei M., Khodarahmi G., Gülseren O. Z. Naturforsch. A, 2017, 72:1131

[35] Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev., 1988, 88:899

[36] Luo Y.R. CRC Handbook of Chemistry and Physics; CRC Press/Taylor and Francis: Boca Raton, FL, 2009

[37] Koh W., Moon H.S., Lee S.G., Choi J.L., Jang S.S. ChemPhysChem, 2015, 16:789