Theoretical Study of First Singlet Excited State of Para-Substituted Platinabenzene Complexes

Document Type: Original Article

Authors

1 Department of chemistry, Faculty of science, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, East Tehran (Ghiamdasht) Campus Islamic Azad University, Tehran, Iran

10.33945/SAMI/CHEMM.2019.6.7

Abstract

The structure, electronic properties, and aromaticity of the para-substituted platinabenzenes were illustrated by applying the hybrid density functional MPW1PW91 theory. The electron donor groups (EDG) and electron withdraw groups (EWG) effects on geometry, frontier orbital energies, reactivity indices and aromaticity in the first singlet excited state of platinabenzene were investigated and compared to ground state. The contribution of the fragments of the studied complexes in the frontier orbitals were calculated both in terms of the ground state and the first singlet excited state. Linear correlations between the studied parameters with Hammett's constants (sp) were given in the two studied states.

Graphical Abstract

Theoretical Study of First Singlet Excited State of Para-Substituted Platinabenzene Complexes

Keywords

Main Subjects


[1] Bleeke J.R. Chem. Rev., 2001, 101:1205

[2] Wright L.J. J. Chem. Soc. Dalton Trans., 2006,1821

[3] He G., Xia H., Jia G. Chin. Sci. Bull., 2004, 49:1543

[4] Haley M.M., Landorf C.W. Angew. Chem. Int. Ed., 2006, 45:3914

[5] Jacob V., Landorf C.W., Zakharov L.N., Weakley T.J.R., Haley M.M. Organometallics, 2009, 28:5183

[6] Landorf C.W., Jacob V, Weakley T.J.R., Haley M.M. Organometallics, 2004, 2:1174

[7] Lin R., Lee K.L., Poon K.C., Sung H.H.Y., Williams I.D., Lin Z.Y.D., Jia G.C. Chem. A Eur. J., 2014, 20:14885

[8] Vivancos A., Paneque M., Poveda M.L., Álvarez E. Angew. Chem. Int. Ed., 2013, 52:10068

[9] Poon K.C., X. Liu L.X., Guo T.X., Li J., Sung H.H.Y., Williams I.D., Lin Z.Y., Jia G.C. Angew. Chem. Int. Ed., 2010, 49:2759

[10] Clark G.R., Ferguson L.A., McIntosh A.E., Sohnel T., Wright L.J. J. Am. Chem. Soc., 2010, 132:13443

[11] Jacob V., Weakley T.J.R., Haley M.M. Angew. Chem. Int. Ed., 2002, 41:3470

[12] Jacob V., Weakley T.J.R., Haley M.M. Organometallics, 2002, 21:5394

[13] Boag N.M. Organometallics, 1988, 7:1446

[14] Proft F.D., Geerlings P. Phys. Chem. Chem. Phys., 2004, 6:242

[15] Ghiasi R. Russian J. Coordinat. Chem., 2011, 37:72

[16] Ghiasi R., Mokarram E.E. Russian J. Coordinat. Chem., 2011, 37:463

[17] Ghiasi R., Pasdar H. Russian J. Phys. Chem. A, 2013, 87:973

[18] Ghiasi R., Ghiasi H., Tabar M.A. Revue Roumaine de Chimie, 2014, 59:749

[19] Iron M.A., Lucassen A.C.B., Cohen H., Boom M.E.V.D., Martin J.M.L. J. Am. Chem. Soc., 2004, 126:11699

[20] Camizo J.A., Morgado J., Sosa P. Organometallics, 1993, 12:5005

[21] Karton A., Iron M.A., Boom M.E.V.D., Martin J.M.L. J. Phys. Chem. A, 2005,109:5454

[22] Shamami M.K., Ghiasi R., Asli M.D. J. Chin. Chem. Soc., 2017, 64:369

[23] Ghobadi H., Ghiasi R., Jamehbozorgi S. J. Chin. Chem. Soc., 2017, 64:522

[24] Ghiasi R., Pasdar H., Fereidoni S. Russian J. Inorganic Chem., 2016, 61:327

[25] Ghiasi R., Heydarbeighi A. Russian J. Inorganic Chem., 2016, 61:985

[26] Ghiasi R., Pasdar H., Irajizadeh F. J. Chil. Chem. Soc., 2015, 60:2740

[27] Peikari A., Ghiasi R., Pasdar H. Russian J. Phys. Chem. A, 2015, 89:250

[28] Ghiasi R., Amini E. J. Struct. Chem., 2015, 56:1483

[29] Fashami M.Z., Ghiasi R. J. Struct. Chem., 2015, 56:1474

[30] Ghiasi R., Boshak A. J. Mex. Chem. Soc., 2013, 57:8

[31] Pasdar H., Ghiasi R. Main Group Chem., 2009, 8:143

[32] Ghiasi R., Saraf S.H., Pasdar H. Monatshefte Chem. Chem. Monthly, 2018, 149:2167

[33] Ghiasi R., Zamani A. J. Chin. Chem. Soc., 2017, 64:1340

[34] Hammett L.P. J. Am. Chem. Soc., 1937, 59:96

[35] Foresman J.B., Head-Gordon M., Pople J.A., Frisch M.J. J. Phys. Chem., 1992, 96:135

[36] Bartlett R.J., Purvis G.D. Int. J. Quantum Chem., 1978, 14:561

[37] Runge E., Gross E.K.U. Phys. Rev. Lett., 1984, 52:997

[38] Andersson K., Malmqvist P.A., Roos B.O. J. Chem. Phys., 1992, 96:1218

[39] Yang D., Yang Y., Liu Y. Computat. Theoret. Chem., 2012, 997:42

[40] Ganguly A., Paul B.K., Ghosh S., Guchhait N. Computat. Theoret. Chem., 2016, 1095:65

[41] Bhattacharyya P.K. Computat. Theoret. Chem., 2015, 1057:43

[42] Annaraj B., Pan S., Neelakantan M.A., Chattaraj P.K., Computat. Theoret. Chem., 2014, 1028:19

[43] S. Karaca, N. Elmacı, Computat. Theoret. Chem., 2011, 964:160

[44] Aguilera-Porta N., Granucci G., Munoz-Muriedas J., Corral I. Computat. Theoret. Chem., 2019, 1151:36

[45] Cui Y., Zhao H., Jiang L., Li P., Ding Y., Song P., Xia L. Computat. Theoret. Chem., 2015, 1074:125

[46] Fan G.H., Li X., Liu J.Y., He G.Z. Computat. Theoret. Chem., 2014, 1030:17

[47] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. (2009). Gaussian 09 (Version Revision A.02). Wallingford CT: Gaussian, Inc.

[48] Hariharan P.C., Pople J.A. Theo. Chim. Acta., 1973, 28:213

[49] Hariharan P.C., Pople J.A. Mol. Phys, 1974, 27:209

[50] Hay P.J., Wadt W.R. J. Chem. Phys, 1985, 82:299

[51] Hay P.J., Wadt W.R. J. Chem. Phys, 1985, 82:284

[52] Schaefer A., Horn H., Ahlrichs R. J. Chem. Phys., 1992,97:2571

[53] Hay P.J., Wadt W.R. J. Chem. Phys., 1985, 82:270

[54] Adamo C., Barone V. J. Chem. Phys., 1998, 108:664

[55] Dunbar R.C. J. Phys. Chem. A, 2002, 106:7328

[56] Porembski M., Weisshaar J.C. J. Phys. Chem. A, 2001, 105:6655

[57] Porembski M., Weisshaar J.C. J. Phys. Chem. A, 2001, 105:4851

[58] Zhang Y., Guo Z., You X.Z. J. Am. Chem. Soc., 2001, 123:9378

[59] O’Boyle N.M., Tenderholt A.L., Langer K.M. J. Comput. Chem., 2008, 29:839

[60] Schleyer P.V.R., Maerker C., Dransfeld A., Jiao H., Hommes N.J.R.V.E. J. Am. Chem. Soc., 1996, 118:6317

[61] Cyranski M.K., Krygowski T.M., Wisiorowski M., Hommes N.J.R., Schleyer P.V.R. Angew. Chem., Int. Ed., 1988, 37:177

[62] Pearson R.G. Chemical Hardness, Wiley-VCH: Oxford, 1997

[63] Parr R.G., Yang W., Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York, 1989

[64] R. G. Parr R.G., Szentpály L.V., Liu S. J. Am. Chem. Soc., 1999, 121:1922