Document Type : Original Article


1 Department of chemistry, Faculty of Science, Sebha University, Sebha/Libya

2 Central Laboratory at Sebha University, Sebha, Libya

3 Advanced Laboratory of Chemical Analysis, Authority of Natural Science Research and Technology, Tripoli, Libya

4 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya



In this study, Zn-substituted cobalt ferrite nanoparticles (CoFe1.9Zn0.1O4, CFZ) were successfully synthesized via a combined EDTA-citrate sol-gel process. The synthesized CoFe1.9Zn0.1O4 nanoparticles were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), point zero charge (pHpzc) and scanning electron microscopy (SEM). The adsorption experiments of methylene blue (MB) onto CFZ surface were conducted in batch mode.  The experiments were conducted under different conditions (contact time, adsorbent dosage, initial pH solution, solution temperature and initial dye concentration). The experimental data were better fitted to pseudo-second-order (PSO) kinetic model (R2=0.9990).  In addition, Langmuir isotherm (R2=0.9906) was the best model to describe the experimental adsorption data. The maximum adsorbed amount of MB (qmax) per unit mass of adsorbent was about 27.79 mg/g. The adsorption thermodynamics (i.e., ΔG°, ΔH°, ΔS°) revealed that the proposed adsorption process is feasible, spontaneous and exothermic in nature. The obtained results suggest that CFZ is a promising material used as an adsorbent for very toxic pollutants from aqueous solutions.

Graphical Abstract

Removal of Methylene Blue from Aqueous Solutions using Nano-Magnetic Adsorbent Based on Zinc-Doped Cobalt Ferrite


Main Subjects

[1] Singh H., Chauhan G., Jain A.K., Sharma S.K. J. Environ. Chem. Eng., 2017, 5:122

[2] Rafatullah M., Sulaiman O., Hashim R., Ahmad A. J. Hazard. Mater., 2010, 177:70

[3] Ismail B., Hussain S.T., Akram S. Chem. Eng. J., 2013, 219:395

[4] Moeinpour F., Alimoradi A., Kazemi M. J. Environ. Health Sci. Eng., 2014, 12:112

[5] Kefeni K.K., Mamba B.B., Msagati T.A.M. Separat. Purificat. Technol., 2017, 188:399

[6] Santhosh C., Velmurugan V., Jacob G., Jeong S.K., Grace A.N.,  Bhatnagar A. Chem. Eng. J., 2016, 306:116

[7] Sun Z., Yao G., Liu M., Zheng S. J. Taiwan Institute  Chem. Eng., 2017, 71:501

[8] Ahmed A., Mohd-Setapar S.H., Chuon C.S., Khatoon A., Wani W.A., Kumar R., Rafatullah M. RSC Adv., 2015, 5:30801

[9] Tan K.B., Vakili M., Horri B.A., Poh P.E., Abdullah A.Z., Salamatinia B. Separat. Purificat. Technol., 2015, 150:229

[10] Mahto T.K., Chowdhuri A.R., Sahu S.K. J. Appl. Poly. Sci., 2014, 131:40840

[11] Dawood S., Sen T.K., Phan C. Water Air Soil Pollut., 2014, 225:1818

[12]  Zhang B.B., Xu J.C., Xin P.H., Han Y.B., Hong B., Jin H.X., Jin D.F., Peng X.L., Li J., Gong J., Ge H.L., Zhu Z.W., Wang X.Q. J. Solid State Chem., 2015, 221:302

[13] Zhang L., Lian J., Wang L., Jiang J., Duan Z., Zhao L. Chem. Eng. J., 2014, 241:384

[14] Kamran S., Shiri N.A. Chem. Method., 2018, 2:23

[15] Reddy D.H.K., Yun Y.S. Coordinat. Chem. Rev., 2016, 315:90

[16] Mehta D., Mazumdar S., Singh S.K. J. Water Process Eng., 2015, 7:244

[17] Gomez-Pastora J., Bringas E., Ortiz I. Chem. Eng. J., 2014, 256:187

[18] Hou X., Feng J., Ren Y., Fan Z., Zhang M. Coll. Surfaces A: Physicochem. Eng. Aspect., 2010, 363:1

[19] Hou X., Feng J., Liu X., Ren Y., Fan Z., Wei T.,  Meng J., Zhang M. J. Coll. Interface Sci., 2011, 362:477

[20] Amar I.A., Sharif A., Alkhayali M.M., Jabji M.A., Altohami F., AbdulQadir M.A., Ahwidi M.M. Iranian J. Energy Environ., 2018, 9:247

[21] Patil M.R., Shrivastava V. Desalinat. Water Treat., 2016, 57:5879

[22] Wang R., Yu J., Hao Q. Chem. Eng. Res. Design, 2018, 132:215

[23] Ling Y., Yu J., Lin B., Zhang X., Zhao L., Liu X. J. Power Sourc., 2011, 196:2631

[24] Ahmad S.I., Ansari S.A., Kumar D.R. Mater. Chem. Phys., 2018, 208:248

[25] Kosmulski M. Surface charging and points of zero charge, CRC press, 2009, Chapter 1.

[26] Tran H.N., Wang Y.F., You S.J., Chao H.P. Process Safety Environ. Protect., 2017, 107:168

[27] Konicki W., Sibera D., Mijowska E., Lendzion-Bieluń Z., Narkiewicz U. J. Coll. Interface Sci., 2013, 398:152

[28] Lagergren S., Kungliga Sevenska Vetenskapasakademiens Handlingar, 1898, 24:1

[29] Ho Y.S., McKay G. Process Biochem., 1999, 34:451

[30] Tran H.N., You S.J., Hosseini-Bandegharaei A., Chao H.P. Water Res., 2017, 120:88

[31] Langmuir I. J. Am. Chem. Soc., 1916, 38:2221

[32] Freundlich H.M.F. J. Phys. Chem., 1906, 57:385

[33] Bonetto L.R., Ferrarini F., Marco C.D., Crespo J.S., Guégan R., Giovanela M. J. Water Process Eng., 2015, 6:11

[34] Kumar L., Kumar P., Kar M. J. Alloy. Compounds, 2013, 551:72

[35] Deb A., Kanmani M., Debnath A., Bhowmik K.L., Saha B. Desalinat. Water Treat., 2017, 89:197

[36] Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. NanoImpact, 2016, 3-4:22

[37] Al-Anber Z.A., Al-Anber M.A., Matouq M. , Al-Ayed O.O., Omari N.M.N.M. Desalination, 2011, 276:169

[38] Chawla S., Uppal H., Yadav M., Bahadur N., Singh N. Ecotoxicol. Environ. Safety, 2017, 135:68

[39] Mahida V.P., Patel M.P. Arabian J. Chem., 2016, 9:430

[40] Amar I.A., Sharif A., Omer N.A., Akale N.E., Altohami F.A., AbdulQadir M.A., Synthesis and Characterization of Magnetic CoFe1.9Cr0.1O4 Nanoparticles by Sol-gel Method and Their Applications as an Adsorbent for Water Treatment, in: The First Conference for Engineering Sciences and Technology (CEST-2018) AIJR Publisher, Garaboulli, Libya, 2018, pp. 756

[41] Anushree C., Philip J. Coll. Surfaces A, 2019, 567:193

[42] Hou X., Feng J., Liu X., Ren Y., Fan Z., Zhang M. J. Coll. Interface Sci., 2011, 353:524

[43] Wang P., Ma Q., Hu D., Wang L. Desalinat. Water Treat., 2016, 57:10261