Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Department of Chemistry, University of North Bengal, Darjeeling-734013, India

2 Department of Chemistry, Cooch Behar Panchanan Barma University, Coochbehar-734001, India

10.33945/SAMI/CHEMM.2020.1.5

Abstract

Triple-ion formation of tetrabutylphosphonium methanesulfonate [Bu4PCH3SO3] in methylamine solution has been reported quantitatively by conductometric study, and the observation has evident from the qualitative analysis of FT-IR spectroscopy. The ionic liquid exists as triple-ion state in low dielectric constant solution (methylamine solution having εr<10). Thus, the conductance data have been analysized using the fuoss-kraus theory of triple-ion formation. After that, the results have been discussed in terms of driving forces i.e., H-bond formation, dipole-dipole interactions, and structural aspect (functional group) of the ionic liquid and methylamine molecules. Shifting of the stretching frequency of functional group of the solvent in presence and absence of the ionic liquid has been taken into account in FTIR spectroscopic study, and then the solvation consequence has been manifest by the change of the intensity.

Graphical Abstract

Conductance and FTIR Spectroscopic Study of Triple-ion Formation of Tetrabutylphosphonium Methanesulfonate in Methylamine Solution

Keywords

Main Subjects

[1] Ekka D., Ray T., Roy K., Roy M.N. J. Chem. Eng. Data, 2016, 61:2187
[2] Reich H.J., Sikorski W.H., Gudmundsson B.O., Dykstra R.R. J. Am. Chem. Soc., 1998, 120:4035
[3] Hojo M., Hasegawa H., Morimoto Y. J. Phys. Chem., 1995, 99:6715
[4] Saxena R.B. Asian J. Chem., 1990, 2:204
[5] Beronius P., Lindback T. Acta Chim. Scadin. Ser. A, 1978, 32:423
[6] Welton T. Chem. Rev., 1999, 99:2071
[7] Endres F., El Abedin S.Z. Phys. Chem. Chem. Phys. 2006, 8:210
[8] Wang P., Zakeeruddin S.M.,  Moser J.E., Grätzel M. J. Phys. Chem. B, 2003,107:13280
[9] Crosthwaite J.M., Aki S.N.V.K., Maginn E.J., Brennecke J.F. J. Phys. Chem. B, 2004, 108:5113
[10] Cadena C., Anthony J.L., Shah J.K., Morrow T.I., Brennecke J.F., Maginn E.J., J. Am Chem. Soc. 2004, 126:5300
[11] Lind Jr. J.E., Zwolenik J.J., Fuoss R.M. J. Am. Chem. Soc., 1959, 81:1557
[12] Abdulagatov I.M., Azizov N.D. Fluid Phase Equilibria, 2006, 240:204
[13] Sinha A., Bhattacharjee A., Roy M.N. J. Disper. Sci. Technol., 2009,30:1003
[14] Fuoss R.M., Accascina F. Electrolytic Conductance; New York: Interscience, 1959
[15] Fuoss R.M. Kraus C.A. J. Am. Chem. Soc., 1993, 55:2387
[16] Fuoss R.M., Krauss C.A. J. Am. Chem. Soc.,1993, 55:1019
[17] Harada Y., Salamon M., Petrucci S. J. Phys. Chem., 1985, 89:2006
[18] Krumgalz B.S. J. Chem. Soc, Faraday Trans. I. 1983, 79: 571
[19] Delsignore M., Farber H. Petrucci, S. J. Phys. Chem. 1985,89: 4968
[20] Nandi D., Roy M.N., Hazra D.K. J. Indian Chem. Soc. 1993, 70: 305
[21] Fuoss R.M., Hirsch E. J. Am. Chem. Soc. 1960, 82: 1013
[22] Sinha A., Roy M.N., Phys. Chem. Liq. 2007, 45: 67
[23] Nandi D., Roy M.N., Hazra D.K., J. Indian Chem. Soc. 1988, 27: 574
[24] Abbott A.P., Schiffrin D.J. J. Chem. Soc., Faraday Trans. 1990, 86: 1453
[25] Philip P.R., Jolicoeur C. J. Phys. Chem. 1973, 77:3071
[26] Smith S.S., Steinle E.D., Meyerhoff M.E., Dawson D.C., J. Gen. Physiol. 1999, 114:799
[27] Covington A.K., Dickinson T. Physical chemistry of organic solvent systems; New York: Plenum, 1973
[28] El-Dossoki F.I. J. Mol. Liquids. 2010, 151: 1
[29] Cabaleiro-Lago E.M., Ríos M.A. J. Chem. Phys. 2000, 112: 2155
[30] Ramana Ch.V.V., Kiran Kumar A.B.V., Moodley M.K. J. Chem., 2013, 2013: Article ID 687106, 4 pages, http://dx.doi.org/10.1155/2013/687106