Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Arak branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Tehran, Iran

10.33945/SAMI/CHEMM.2020.1.7

Abstract

In this paper, the DFT methods were applied at the M06-2X/6–311++G(d,p) levels of theory to investigate the β-hydrogen elimination in the (C2X5)2B(C2H5); X=H, F, Cl, Br. It was attempted to show how the electronegativity of halogen affects the barrier height (ΔE) and thermodynamic parameters (ΔG and ΔH) of this reaction. The Wiberg bond indices were employed to check the progress of the reactions. The synchronicity values of the reactions were determined as well. The kinetic parameters of these reactions were computed in 300-1200 K temperature range. Furthermore, the fitted equations to the gas phase Arrhenius equation were found. Effect of the electronegativity of halogen was exemplified on the kinetic parameters.

Graphical Abstract

Computational Investigation of β-hydrogen Elimination in the (C2X5)2B(C2H5); X=H, F, Cl, Br Molecules

Keywords

Main Subjects

[1] Hartwig J.F. Organotransition Metal Chemistry, From Bonding to Catalysis; University Science Books: Sausalito, CA, 2009
[2] Crabtree R.H. The Organometallic Chemistry of the Transition Metals; 3rd ed.; Wiley: New York, 2001
[3] Elschenbroich C. Organometallics; 3rd ed.; Wiley-VCH: Weinheim, Germany, 2006
[4] Huheey J.E., Keiter E.A., Keiter R.L. Inorganic Chemistry: Principles of Structure and Reactivity; 4th ed ed.; HarperCollins College: New York, 1993
[5] Collman J.P., Principles and Applications of Organometallic Chemistry; University Science Books: Mill Valley, CA, 1987
[6] Gloaguen Y., Jongens L.M., Reek J.N.H., Lutz M., Bruin B., Vlugt J.I. Organometallics, 2013, 32:4284
[7] Esteruelas M.A., Larramona C., Oñate E. Organometallics, 2013, 32:2567
[8] Bellows S.M., Cundari T.R., Holland P.L. Organometallics, 2013, 32:4741
[9] D. Inoki; T. Matsumoto; H. Nakai; S. Ogo: Organometallics, 2012, 31:2996
[10] Theofanis P.L., Goddard W.A. Organometallics, 2011, 30:4941
[11] Brookhart M., Green M.L., Parkin G. Proc. Natl. Acad. Sci. U.S.A., 2007, 104:6908
[12] Koga N., Obara S., Kitaura K., Morokuma K. J. Am. Chem. Soc., 1985, 107:7109
[13] Tang S.Y., Zhang J., Fu Y. Comput. Theor. Chem., 2013, 1007:31
[14] Ryan C., Lewis A.K.K., Caddick S., Kaltsoyannis N. Theor. Chem. Accoun., 2011, 129:303
[15] Debnath T., Ash T., Banu T., Das A.K. Theor. Chem. Accoun., 2016, 135:175
[16] Rozenel S.S., Perrin L., Eisenstein O., Andersen R.A. Organometallics, 2017, 36:97
[17] Rekhroukh F., Estevez L., Mallet-Ladeira S., Miqueu K., Amgoune A., Bourissou D. J. Am. Chem. Soc., 2016, 138:11920
[18] Lam K.C., Lin Z., Marder T.B. Organometallics, 2007, 26:3149
[19] Reis M.C., Lopez C.S., Kraka E., Cremer D., Faza O.N. Inorg. Chem., 2016, 55:8636
[20] Pudasaini B., Janesko B.G. Organometallics, 2012, 31:4610
[21] Cundari T.R., Taylor C.D. Organometallics, 2003, 22:4047
[22] Theofanis P.L., Goddard W.A. Organometallics, 2011, 30:4941
[23] Uematsu R., Saka C., Sumiya Y., Ichino T., Taketsugu T., Maeda S. Chem. Commun., 2017, 53:7302
[24] Curran D.P., McFadden T.R. J. Am. Chem. Soc., 2017, 138:7741
[25] Yorimitsu H., Oshima K. Radicals in Organic Synthesis. Renaud, P., Ed.; Wiley-VCH,: Weinheim, 2011, 1:11-27
[26] Nozaki K., Oshima K., Utimoto K. J. Am. Chem. Soc., 1987, 109:2547
[27] Ollivier C., Renaud P. Chem. Rev., 2001, 101:3415
[28] (a) Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman G., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09. Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009 (b) Gomaa E., Berghout M., Moustafa M., El Taweel F., Farid H.  Prog. Chem.  Biochem. Res., 2018, 1:19
[29] Krishnan R., Binkley J.S., Seeger R., Pople J.A. J. Chem. Phys., 1980, 72:650
[30] Zhao Y., Truhla D.G. J. Phys. Chem. A, 2006, 110:5121
[31] Fukui K. Acc. Chem. Res., 1981, 14:363
[32] Fukui K. J. Phys. Chem., 1970, 74:4161
[33] Gonzalez C., Schlegel H.B., J. Phys. Chem., 1990, 94:5523
[34] Gonzalez C., Schlegel H.B. J. Chem. Phys., 1989, 90:2154
[35] Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev., 1988, 88:899
[36] Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. NBO Version 3.1. Madison, 1988
[37] Miyoshi A. Gaussian Post Processor (GPOP). University of Tokyo: Tokyo, 2010
[38] Garrett B.C., Truhlar D.G., J. Phys. Chem., 1979, 83:2921
[39] Shavitt I. J. Chem. Phys., 1959, 31:1359
[40] Wiberg K.B. Tetrahedron, 1968, 24:1083
[41] Moyano A., Pericas M.A. Valenti E., J. Org. Chem., 1989, 54:573
[42] Manoharan M., Venuvanalingam P. J. Mol. Struct. (THEOCHEM), 1997, 394:41
[43] Manoharan M., Venuvanalingam P. J. Chem. Soc., Perkin Trans ., 1997,1799