Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran

2 Department of Chemistry, Payame Noor University, Tehran, Iran

10.33945/SAMI/CHEMM.2020.2.9

Abstract

In this study, chemical reactivity of (4,0) and (5,0) AlN nanotubes by interaction with nitrosamine molecule as a carcinogen agent was investigated using the B3LYP/6-311++G (d) level of theory. The HOMO–LUMO gap, electronic chemical potential (m), hardness (ƞ), softness (S), the maximum amount of electronic charge (DNmax), and electrophilicity index (ω) for the monomers and complexes were calculated. The results show that the interaction of NA with nanotubes cab be changes electronic properties of nanotubes. To investigate the interactions between the NA molecule and nanotubes, analysis of atoms in molecules was performed at B3LYP/6-311++G (d) level of theory. The Multiwfn program was used to calculation of electron density of states (DOS). The charge transfer in complexes was calculated using the NBO analysis. The results of this work were compared with the results of adsorption of NA molecule on BN nanotubes. It is expected that the AlN nanotubes can be used as sensor for detection of NA molecules.

Graphical Abstract

Investigation of Adsorption of the Nitrosamine Molecule as a Carcinogen Agent on the AlN Nanotubes: A DFT Study

Keywords

[1] Mirzaie A. J. Med. Chem. Sci., 2018, 1:31
[2] (a) Ghiasi R., Aghazadeh Kozeh Kanani F. Asian J. Nanosci. Mater., 2018, 1:234 (b) Vinodhkumar G., Ramya R., vimalan M., Potheher I., Cyrac Peter A., Prog. Chem. Biochem. Res. 2018, 1:40 (c) Mohammadi S., Taheri A., Rezayati-Zad Z. Prog. Chem. Biochem. Res. 2018, 1:1
[3] Srivastava A., Jain N., Nagawat A.K. Quantum Matt., 2013, 2:307
[4] Rodríguez Juárez A., Chigo Anota E., Hernández Cocoletzi H., Sánchez Ramírez J.F., Castro M. Nanotube. Carbon Nanostruct., 2017, 25:716
[5] Elobeid W.H., Elbashir A.A. Prog. Chem. Biochem. Res., 2019, 2:24
[6] Mohammadi S., Taheri A., Rezayati-Zad Z. Prog. Chem. Biochem. Res., 2018, 1:1
[7] Vinodhkumar G., Ramya R., Vimalan M., Potheher I., Cyrac Peter A. Prog. Chem. Biochem. Res., 2018, 1:40
[8] Ghodsi J., Rafati A., Shoja Y. Adv. J. Chem. Section A (Theo. Eng. Appl. Chem.), 2018, 1:39
[9] Harris P.J.F., Carbon Nanotubes and Related Structures, CambridgeUniversity Press: Cambridge, 1999
[10] Ahmadi A., Beheshtian J., Hadipour N.L. Physica E., 2011, 43:1717
[11] Zahedi E., Seif A. Physica E., 2011, 44:179
[12] Ahmadi Peyghan A., Omidvar A., Hadipour N.L., Bagheri Z., Kamfiroozi M. Physica E., 2012, 44:1357
[13] Li L., Li C.P., Chen Y. Physica E., 2008, 40:2513
[14] Rezaei Sameti M., Amirian B. Asian J. Nanosci. Mater., 2018, 1:262
[15] Zhang J.M., Li H.H., Zhang Y., Xu K.W. Physica E. 2011, 43:1249
[16] de Almeida J.M., Kar T., Piquini P. Phys. Lett. A., 2010, 374:877
[17] Ahmadi A., Hadipour N.L., Kamfiroozi M., Bagheri Z. Sens. Actuators B: Chem., 2012, 161:1025
[18] DehnoKhalaji A., Weil M., Hadadzadeh H., Daryanavard M. Inorg. Chim. Acta., 2009, 362:4837
[19] Samadizadeh M., Rastegar S., Ahmadi Peyghan A. Physica E., 2015, 69:75
[20] Baei M.T., Ramezani Taghartapeh M., Tazikeh Lemeski E., Soltani A. Superlat. Microstruct., 2014, 72:370
[21] Soltani A., Ramezani Taghartapeh M., Tazikeh Lemeski E., Abroudi M., Mighani H. Superlat. Microstruct., 2013, 58:178
[22] Jiao Y., Du A., Zhu Z., Rudolph V., Smith S.C. J. Mater. Chem., 2010, 20:10426
[23] Peyghan A.A., Baei M.T., Hashemian S., Torabi P. J. Mol. Model., 2013, 19:859
[24] Noei M., Salari A.A., Ahmadaghaei N., Bagheri Z., Ahmadi Peyghan A. C. R. Chim., 2013, 16:985
[25] Gankhuyag N., Lee K.H., Cho J.Y. J. Mammary Gland Biol .Neoplasia., 2017, 22:159
[26] Risch H.A. Mol. Carcinogen., 2012, 51:109
[27] Zhu J.H., Yan D., Xia J.R., Ma L.L., Shen B. Chemosphere., 2001, 44:949
[28] Roohi H., Jahantab M. J. Chem. Sci., 2013, 125:1607
[29] Makiabadi B., Zakarianezhad M., Ekrami Kakhaki M.S., Zareye S. Phosphorus Sulfur Silicon Related Elements., 2019, 194: 57
[30] Gomaa E., Berghout M., Moustafa M., El Taweel F., Farid H. Prog. Chem. Biochem. Res., 2018, 1:19
[31] Islam M., Kumer A., Sarker N., Paul S., Zannat A. Adv. J. Chem. Section A (Theor., Eng. Appl. Chem.)., 2019, 2:316
[32] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J.,Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 03. Gaussian Inc.: Wallingford, 2009.
[33] Boys S.F., Bernardi F. Mol. Phys., 1970, 19:553
[34] O'Boyle N.M., Tenderholt A.L., Langner K.M.,  J. Comp. Chem., 2008, 29:839
[35] Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev., 1988, 88:899
[36] Biegler-König F., Schönbohm J., Bayles D. J. Comput. Chem., 2001, 22:545