Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran

3 Department of chemistry, Faculty of science, Arak Branch, Islamic Azad University, Arak, Iran

10.33945/SAMI/CHEMM/2020.3.1

Abstract

In this work, density functional theory (DFT) method was employed at the M062X/6–311G (d,p) level of theory to investigate the Diels-Alder reaction of isobenzofuran and ethylene in the gas and solution phases theoretically. To perform the computations in the solution phase, the polarizable continuum model (PCM) was applied. It was evaluated how the solvent affects the barrier height (DE) and thermodynamic parameters (DG and DH) in this reaction. The dependency of these parameters on the Onsager function was discussed. The polar character of the reaction was measured through the global electron density transfer (GEDT). The Wiberg bond indices were used to assess the progress of the reactions, and the synchronicity values of the reactions were determined. Results revealed that, the barrier energy values of the reaction increased in solution phase compared to gas phase. GEDT values were lower than 0.15 e and activation barrier higher than 18 kcal/mol in the gas and solution phases. Therefore, this reaction was considered as a non-polar DA reaction.

Graphical Abstract

Computational Investigation into the Solvent Effect on the Diels-Alder Reaction of Isobenzofuran and Ethylene

Keywords

[1] Fringuelli F., Taticchi A. The Diels-Alder Reaction. Selected Practical Methods; John Wiley & Sons: New York, 2002
[2] Fleming I. Pericyclic Reactions; Oxford University Press Inc.: New York, 1999
[3] Nicolau K.C., Snyder S.A., Montagnon T., Vassilikogiannakis G. Angew. Chem. Int. Ed. Engl., 2002, 41:1668
[4] Diels O., Alder K. Just. Liebigs Ann. Chem., 1928, 98:460
[5] Carruthers J.E., Carruthers W., Coldham I., Some Modern Methods of Organic Synthesis; Second ed.; Cambridge University Press, Cambridge, UK, 1978
[6] Carruthers W. Cycloadditions Reactions in Organic Synthesis; Pergamon, Oxford: UK, 1990; (b) Zare A., Mirzaei M., Rostami M., Jafari E. J. Med. Chem. Sci., 2020, 3:55; (c) Mirzaie A.  J. Med. Chem. Sci., 2018, 1:31; (d) Nabati M., Bodaghi-Namileh V., Sarshar S. Prog. Chem. Biochem. Res., 2019, 2:108, doi: 10.33945/SAMI/PCBR.2019.2.4
[7] Geerlings P., Proft F.D., Langenaeker W. Chem. Rev., 2003, 103:1793
[8] Ess D.H., Jones G.O., Houk K.N. Adv. Synth. Catal., 2006, 348:2337
[9] Ormachea C.M., Mancini P.M.E., Kneeteman M.N., Domingo L.R. Computat. Theor. Chem., 2015, 1072:37
[10] Sarotti A.M. Org. Biomol. Chem., 2014, 12:187
[11] Mancinia P.M.E., Kneeteman M.N., Cainelli M., Ormachea C.M., Domingo L.R. J. Mol. Struct., 2017, 1147:155
[12] Breslow R., Maitra U., Rideout D. Tetrahedron Lett., 1983, 24:1901
[13] Cativiela C., Garcia J.I., Mayoral J.A., Avenoza A., Peregrina J.M., Roy M.A. J. Phys. Org. Chem., 1991, 4:48
[14] Cativiela C., García J.I., Mayoral J.A., Salvatella L. J. Chem. Soc. Perkin Trans., 1994, 847
[15] Ruiz-López M.F., Assfeld X., García J.I.X., Mayoral J.A., Salvatella L. J. Am. Chem. Soc., 1993, 115:8780
[16] Schneider H.J., Sangwan N.K. Angew. Chem. Int. Ed., 1987, 26:896
[17] Bini R., Chiappe C., Mestre V.L., Pomellic C.S., Welton T. Org. Biomol. Chem., 2008, 6:2522
[18] Chiappe C., Malvaldi M., Pomelli C.S. Green Chem., 2010, 12:1330
[19] Bini R., Chiappe C., Mestre V.L., Pomelli C.S., Welton T. Theor. Chem. Acc., 2009, 123:347
[20] Mancini P.M.E., Kneeteman M.N., Cainelli M., Ormachea C.M., Domingo L.R. J. Mol. Struct., 2017, 1147:155
[21] Ansari E.S., Ghiasi R., Forghaniha A. Struct. Chem., 2019, 30:30877
[22] Selvarengan P., Kolandaivel P. J. Mol. Struct. THEOCHEM, 2002, 617:99
[23] Allin S.B., Leslie T.M., Lumpkin R.S. Chem. Mater., 1996, 8:428
[24] Aquino A.J.A., Tunega D., Haberhauer G., Gerzabek M.H., Lischka H. J. Phys. Chem. A, 2002, 106:1862
[25] Springborg I.A.H.E.M. Specialist Periodical Reports: Chemical Modelling, Applications and Theory, vol. 5; Royal Society of Chemistry: Cambridge, UK, 2008
[26] Tomasi J., Mennucci B., Cammi R. Chem. Rev., 2005, 105:2999
[27] Rezazadeh M., Ghiasi R., Jamehbozorgi S. J. Struc. Chem., 2018, 59:245
[28] Ghiasi R., Zafarniya F., Ketabi S. Russian J. Inorg. Chem., 2017, 62:1371
[29] Alavi H., Ghiasi R. J. Struc. Chem., 2017, 58:30
[30] Zafarniya F., Ghiasi R., Jameh-Bozorghi S. Phys. Chem. Liq., 2017, 55:444
[31] Zafarnia F., Ghiasi R., Jamehbozorgi S. J. Struc. Chem., 2017, 58:1324
[32] Sadeghi N., Ghiasi R., Fazaeli R., Jamehbozorgi S. J. Appl. Spectros., 2016, 83:909
[33] Ghiasi R., Peikari A. Phys. Chem. Liq., 2017, 55:421
[34] Ghiasi R., Peikari A. Russian J. Phys. Chem. A, 2016, 90:2211
[35] Ghiasi R., Peikari A. J. Appl. Spectros., 2017, 84:148
[36] Ghiasi R., Pasdar H., Fereidoni S. Russian J. Inorg. Chem., 2016, 61:327
[37] Ghiasi R., Nemati M., Hakimioun A.H. J. Chil. Chem. Soc., 2016, 61:2921
[38] Peikari A., Ghiasi R., Pasdar H. Russian J. Phys. Chem. A., 2015, 89:250
[39] Ghiasi R., Amini E. J. Struct. Chem., 2015, 56:1483
[40] Fashami M.Z., Ghiasi R. J. Struct. Chem., 2015, 56:1474
[41] Rezazadeh M., Ghiasi R., Jamehbozorgi S. J. Appl. Spectros., 2018, 85:926
[42] Rezaeyani F., Ghiasi R., Yousefi M. Russian J. Phys. Chem. A, 2018, 92:1748
[43] Rahimi M., Ghiasi R. J. Mol. Liq., 2018, 265:164
[44] Ghiasi R. J. Mol. Liq., 2018, 264:616
[45] Nilchi M., Ghiasi R., Nasab E.M. J. Chilean. Chem. Soc., 2019, 64:4265
 [46] Kazemi Z., Ghiasi R., Jamehbozorgi S. J. Struct. Chem., 2018, 59:1044
[47] Ghiasi R., Sadeghi N., Jamehbozorgi S. J. Struct. Chem., 2018, 59:1791
[48] Fereidoni S., Ghiasi R., Pasdar H. J. Struct. Chem., 2018, 59:1058
[49] Li D., Wanga Y., Han K. Coordinat. Chem. Rev., 2012, 256:1137
[50] Song G., Su Y., Periana R.A., Crabtree R.H., Han K., Zhang H., Li X. Angew. Chem. Int. Edit., 2010, 49:912
[51] Wang H., Wang Y., Han K.L., Peng X.J. J. Org. Chem., 2005, 70:4910
[52] Li D., Huang X., Han K., Zhan C.G. J. Am. Chem. Soc., 2011, 133:7416
[53] Ghiasi R., Fashami M.Z. J. Theor. Comput. Chem., 2014, 13:1450041
[54] Shajari N., Ghiasi R. J. Struc. Chem., 2018, 59:541
[55] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V.,  Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09. Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.
[56] Hay P.J. J. Chem. Phys., 1977, 66:4377
[57] Krishnan R., Binkley J.S., Seeger R., Pople J.A. J. Chem. Phys., 1980, 72:650
[58] McLean A.D., Chandler G.S. J. Chem. Phys., 1980, 72:5639
[59] Wachters A.J.H.  J. Chem. Phys., 1970, 52:1033
[60] Feller D. J. Comput. Chem., 1996, 17:1571
[61] Schuchardt K.L., Didier B.T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J., Windus T.L. J. Chem. Inf. Model, 2007, 47:1045
[62] Zhao Y., Truhla D.G. J. Phys. Chem. A, 2006, 110:5121
[63] Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev., 1988, 88:899
[64] Glendening E.D., Reed A.E., Carpenter J.E., Weinhold F. NBO Version 3.1. Madison, 1988.
[65] Fukui K. Acc. Chem. Res., 1981, 14:363
[66] Fukui K. J. Phys. Chem., 1970, 74:4161
[67] Gonzalez C., Schlegel H.B., J. Phys. Chem., 1990, 94:5523
[68] Gonzalez C., Schlegel H.B. J. Chem. Phys., 1989, 90:2154
[69] Tomasi J., Mennucci B., Cammi R. Chem. Rev., 2005, 105:2999
[70] Domingo I.R. RSC Adv., 2014, 4:32415
[71] Jarmillo P., Domingo L.R., Chamorro E., Pe´rez P. J. Mol. Struct. (THEOCHEM), 2008, 865:68
[72] Wiberg K.B. Tetrahedron, 1968, 24:1083
[73] Moyano A., Perica`s M.A., Valenti E.,  J. Org. Chem., 1989, 54:573
[74] Manoharan M., Venuvanalingam P. J. Mol. Struct. (THEOCHEM), 1997, 394:41
[75] Manoharan M., Venuvanalingam P. J. Chem. Soc., Perkin Trans, 1997, 1799