Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Tehran, Iran

10.33945/SAMI/CHEMM/2020.3.8

Abstract

In this study, the stabilities of trans-2,3- and trans-2,5-dihalo-1,4-dioxanes conformers were investigated at the LC-BLYP/6-311+G(d,p) theory level. The total energies and dipole moments of the axial and equatorial conformations were calculated for the mentioned molecules. The stability of theconformers, bond distances and spin-spin coupling constants of C-Hax and C-Heq bonds were explained with the negative hyperconjugative anomeric effects. The negative hyperconjugative anomeric effects on these conformers were illustrated using the natural bond orbital (NBO) analysis. Deformation maps of electron density for these conformers were provided, as well. In the basis of these calculations, the axial conformer was more stable than equatorial conformer in the studied molecules. Moreover, the trans-2,3- and trans-2,5-dihalo-1,4-dioxanes molecules were iso-energetic.

Graphical Abstract

An Attempt for the Quantitative DFT-based Interpretation of the Conformational Preference of Negative Hyperconjugative Anomeric Effects in Trans-2,3- and Trans-2,5-dihalo-1,4-dioxanes

Keywords

[1] Mohr T.K., Stickney J.A., DiGuiseppi W.H., Environmental investigation and remediation: 1, 4-dioxane and other solvent stabilizers. CRC Press, 2016.
[2] EPA U., Integrated Risk Information System (IRIS) on 1, 4-Dioxane. National Center for Environmental Assessment, Office of Research and Development, Washington DC, 2013.
[3] Niwa K., Tanaka N., Kim S.K., Kojoma M., YKashiwada Y., Org. Lett., 2017, 20:5977
[4] Jasmann J.R., Gedalanga P.B., Borch T., Mahendra S., Blotevogel J. Environ. Sci. Technol., 2017, 51:12619
[5] He Y., MathieuJ., Yang Y., Yu P., da Silva M.L.B., Alvarez P.J.J. Environ. Sci. Technol. Lett., 2017, 4:494
[6] Sharma V.K., Malik S., Solanki S. J. Chem. Eng. Data, 2017, 62:623
[7] Bailey W.F., Lambert K.M. In Stereochemistry and Global Connectivity: The Legacy of Ernest L. Eliel Volume 2; American Chemical Society: 2017; Vol. 1258, p 19
[8] Barndõk H., Hermosilla D., Negro C., Blanco A. ACS Sustain. Chem. Eng., 2018, 6:5888
[9] Benabida H., Belaribi F.B. J. Chem. Eng. Data, 2018, 63: 2697
[10] Watanabe T., Geib S.J., Curran D.P. J. Org. Chem., 2017, 82:13034
[11] Deng D., Li F., Li M. Environ. Sci. Technol. Lett., 2017, 5:86
[12] Altona C., Knobler C., Romers C., Rev. Trav. Chim., 1963, 82:1089
[13] Altona C., Knobler C., Romers C. Acta Cryst., 1963, 16:1217
[14] Altona C., Molecular structure and conformation of some Halogeno-1, 4-dioxanes. Diss. Druco, 1964
[15] Cuevas G., Juaristi E. J. Am. Chem. Soc., 2002, 124:13088
[16] Islam M.J, Kumer A., Sarker N., Paul S., Zannat A. Adv. J. Chem. A, 2019, 2:316
[17] Javanshir Z., Jameh-Bozorghi S., Peyki P. Adv. J. Chem. A, 2018, 1:117
[18] Kumer A., Sarker N., Paul S., Zannat A. Adv. J. Chem. A, 2019, 2:190
[19] Nabati M., Bodaghi-Namileh V. Adv. J. Chem. A, 2020, 3:58
[20] Alabugin I.V., Manoharan M., Zeidan T.A. J. Am. Chem. Soc., 2003, 125:14014
[21] Alabugin I.V. J. Org. Chem., 2000, 65:3910
[22] Gauze G.F., Basso E.A., Contreras R.H., Tormena C.F. J. Phys. Chem. A, 2009, 113:2647
[23] Juaristi E., Notario R. J. Org. Chem., 2018, 83:3293
[24] Kupova O.Y., Vakulin I.V., Talipov R.F. Computat. Theoret. Chem., 2013, 1013:57
[25] Shiryaev V.A., Shiryaev A.K. Computat. Theoret. Chem., 2014, 1044:87
[26] Nasrolahi M., Ghiasi R., Shafiee F. J. Struct. Chem., 2019, 60:746
[27] Najjari Milani N., Ghiasi R., Forghaniha A. J. Sulfur Chem., 2018, 39:665
[28] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalman G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara, Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.M., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Revision A.02 ed.; Gaussian, Inc.: Wallingford CT, 2009.
[29] Krishnan R., Binkley J.S., Seeger R., Pople J.A. J. Chem. Phys., 1980, 72:650
[30] McLean A.D., Chandler G.S. J. Chem. Phys., 1980, 72:5639
[31] Curtiss L.A., McGrath M.P., Blandeau J.P., Davis N.E., Binning R.C., Radom J.L. J. Chem. Phys., 1995, 103:6104
[32] Iikura H., Tsuneda T., Yanai T., Hirao K. J. Chem. Phys., 2001, 115:3540
[33] Reed A.E., Curtiss L.A., Weinhold F. Chem. Rev., 1988, 88:899
[34] Wolinski K., Hinton J.F., Pulay P. J. Am. Chem. Soc., 1990, 112:8251
[35] Lu T., Chen F. J. Comput. Chem., 2012, 33:580
[36] Perrin C.L., Armstrong K.B., Fabian M.A. J. Am. Chem. Soc., 1994, 116:715
[37] Weinhold F., Discovering Chemistry with Natural Bond Orbitals, Wiley-VCH, Hoboken NJ, 2012
[38] Romers C., Altona C., Buys H.R., Havinga E. Top. Stereochem., 1969, 4:39
[39] Szarek, W.A. and Horton, D., Anomeric effect. American Chemical Society, Washington, DC, 1979
[40] Fraser R.R., Bresse M. Can. J. Chem., 1983, 61:576
[41] Wolfe S., Pinto B.M., Varma V., Leung R.Y.N. Can. J. Chem., 1990, 68:1051
[42] Alabugin I.V. J. Org. Chem., 2000, 65:3910
[43] Peralta J.E., Contreras R.H., Snyder J.P. Chem. Commun., 2000, 2025
[44] Wilkens S.J., Westler W.M., Markley J.L., Weinhold F. J. Am. Chem. Soc., 2001, 123:12026