Supplementary File

Lithium-Functionalization of Pyrrole-n-Carboxylic Acids (n = 1, 2, 3)

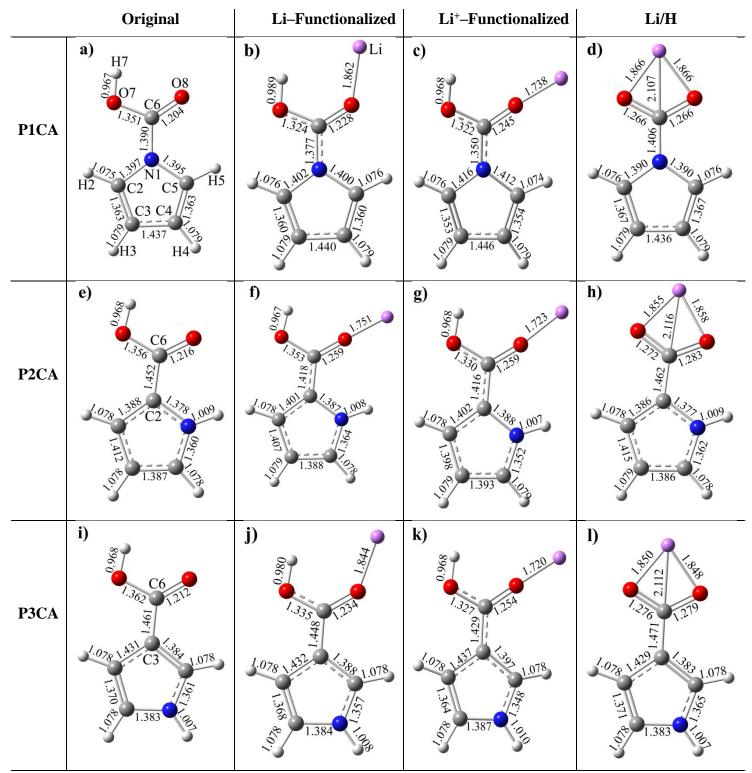
Nahid Ghasemi^a, Mahmoud Mirzaei^{b*},

^a Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

^b Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

This supplementary file includes the obtained results at the B3LYP/6–311+G** theoretical level for all of investigated PnCA models for making comparison of different levels of calculations between 6–31+G* and 6–311+G** basis sets. The evaluated results have been supported by both theoretical levels with negligible differences; therefore, the results of 6–31+G* basis set have been only listed in the original manuscript. Moreover, according to an earlier year, a new model has been studied here to see the stabilities of different types of Lifunctionalized PnCA models. The H atom of carboxylic acid group of PnCA has been replaced by the Li atom to make the Li/H model (Fig. S1). Indeed, the main purpose of this work is keeping the initial carboxylic group and adding the extra Li/Li+. The values of E_{Ads} indicated that the Li/H model is more stable than Li–PnCA models but weaker than Li+–PnCA models. A potential reader could compare the results of this additional job with the results of an earlier work [23].

	P1CA				P2CA				P3CA			
Property	Orig.	–Li	–Li+	Li/H	Orig.	–Li	–Li+	Li/H	Orig.	–Li	–Li+	Li/H
<i>d</i> С6—О7 Å	1.35	1.32	1.32	1.27	1.36	1.35	1.33	1.28	1.36	1.33	1.33	1.28
<i>d</i> С6—О8 Å	1.20	1.23	1.24	1.27	1.22	1.26	1.26	1.28	1.21	1.23	1.25	1.28
dO₃—Li Å	—	1.86	1.74	1.87	—	1.75	1.72	1.86	—	1.84	1.72	1.84
∠O 7—C6—O8 [°]	124.32	124.73	122.31	122.70	122.61	120.00	120.67	121.00	121.79	122.10	120.00	120.55
∠C6—O8—Li [°]	—	130.70	176.28	82.11	—	171.40	172.73	82.93	—	139.16	178.60	82.84
$E_{\rm T}$ keV	-10.85	-11.06	-11.05	-11.04	-10.85	-11.06	-11.05	-11.04	-10.85	-11.06	-11.05	-11.04
BSSE eV	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02
$E_{\mathrm{Ads}} \mathrm{eV}$		-0.58	-1.91	-1.22		-0.66	-2.08	-1.61	—	-0.65	-2.27	-1.90
I eV	6.54	2.98	10.10	5.90	6.61	2.79	10.31	5.97	6.54	2.59	10.07	5.95
A eV	1.13	1.83	5.45	1.21	1.31	1.55	5.62	1.02	0.89	1.78	5.37	0.86
EG eV	5.41	1.15	4.65	4.69	5.30	1.24	4.69	4.95	5.65	0.81	4.70	5.09
D м Debye	1.53	4.043	11.40	4.80	1.45	1.26	11.45	3.77	3.554	8.24	10.41	1.69


Table S1: Molecular properties; obtained by the B3LYP/6-311+G** theoretical level^{*}

*See the models in Fig. (S1).

		P	1CA		P2CA				РЗСА			
Atom	Orig.	–Li	–Li+	Li/H	Orig.	–Li	–Li+	Li/H	Orig.	–Li	–Li+	Li/H
N ₁	-0.46	-0.46	-0.44	-0.46	-0.50	-0.52	-0.50	-0.51	-0.52	-0.51	-0.49	-0.53
C ₂	-0.03	-0.02	-0.02	-0.02	-0.01	-0.01	-0.03	0.02	0.03	0.04	0.06	0.01
C ₃	-0.26	-0.25	-0.22	-0.28	-0.22	-0.22	-0.15	-0.22	-0.24	-0.25	-0.26	-0.23
C ₄	-0.26	-0.26	-0.21	-0.28	-0.29	-0.29	-0.27	-0.30	-0.25	-0.24	-0.22	-0.25
C 5	-0.02	-0.18	-0.03	-0.02	-0.01	-0.01	0.06	-0.02	-0.05	-0.04	-0.02	-0.06
C ₆	0.94	0.98	1.00	0.91	0.76	0.73	0.81	0.74	0.78	0.83	0.85	0.76
O 7	-0.69	-0.66	-0.63	-0.81	-0.68	-0.67	-0.63	-0.81	-0.69	-0.66	-0.62	-0.82
O 8	-0.60	-0.74	-0.86	-0.81	-0.63	-0.86	-0.89	-0.84	-0.62	-0.75	-0.87	-0.83
Li		0.04	0.96	0.90	—	0.28	0.96	0.89		0.01	0.96	0.88
\mathbf{H}_{1}				—	0.43	0.42	0.42	0.42	0.41	0.41	0.43	0.40
H_2	0.23	0.23	0.24	0.23	—		_		0.22	0.23	0.22	0.22
H 3	0.22	0.22	0.24	0.21	0.23	0.23	0.24	0.23		—		_
H_4	0.22	0.22	0.24	0.21	0.22	0.22	0.24	0.21	0.23	0.24	0.25	0.23
H5	0.23	0.23	0.22	0.23	0.21	0.21	0.23	0.20	0.21	0.21	0.23	0.20
H 7	0.50	0.48	0.51		0.48	0.48	0.42		0.48	0.48	0.50	

Table S2: Atomic charges Q; obtained by the B3LYP/6-311+G** theoretical level^{*}

*See the models in Fig. (S1).

Figure S1: The B3LYP/6-311+G** optimized structures of original and singular Li/Li+–Functionalized and Li/H PnCA (n=1–3) models. The H atom of carboxylic acid group is replaced by the Li atom in the Li/H model.

	Ori	iginal	Li–Funct	ionalized	Li ⁺ –Funct	ionalized	Li/H		
	НОМО	LUMO	НОМО	LUMO	НОМО	LUMO	НОМО	LUMO	
P1CA									
P2CA									
P3CA									

Figure S2: The B3LYP/6-311+G** HOMO and LUMO distribution patterns of original and singular Li/Li+–Functionalized and Li/H PnCA (n=1–3) models. The H atom of carboxylic acid group is replaced by the Li atom in the Li/H model.