Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 Candidate of Pedagogical Sciences, Kh. Dosmukhamedov Atyrau University, Atyrau, Kazakhstan

2 Candidate of Physical and Mathematical Sciences, Kh. Dosmukhamedov Atyrau University, Atyrau, Kazakhstan

3 Master of Science in Natural Sciences, Docent Atyrau, University of Oil and Gas Named After Safi Utebayev, Аtyrau, Kazakhstan

4 Master of Natural Sciences, Atyrau University, Atyrau, Kazakhstan

5 Candidate of Pedagogical Sciences, Caspian University of Technology and Engineering Named After Sh. Esenova, Aktau, Kazakhstan

6 Senior Lecturer, Аtyrau, University of Oil and Gas Named After Safi Utebayev, Аtyrau, Kazakhstan

Abstract

In the current study, we attempted to introduce a novel approach to stop the fire spread in all type of fires and improve the fire and explosion safety for LNG storage. In so doing, we relied on the application of innovative technology “Sogda”. The design of a screen "Sogda" consists of two parallel metallic grids stretched over metallic frames. Active special water spray nozzles located between two parallel fixed grids creates water film on the surface of grid and water vapor droplet-air medium in the space between two parallel grids. This complex process partially attenuates the radiant heat flow from 45 to 100 kW/m2 or more times, representing mainly in electromagnetic waves in an IR diapason, as a result of thermo-physical effects and it is optical phenomena that prevent the passage of explosive, toxic gases.
DOR: https://dorl.net/dor/20.1001.1.26457776.2021.5.2.7.3

Graphical Abstract

A Novel Approach to Stop the Fire Spread, Hazardous Gases and Radionuclides

Keywords

Main Subjects

[1]. Azarm M.A., Travis R.J., Fire Safety In Nuclear Power Plants: A Risk-Informed And Performance-Based Approach. Brookhaven National Lab., Upton, NY (US), 1999
[2]. Li J., Huang Z., Procedia Eng., 2012, 45:70
[3]. Zhao J., Li W., Bai C., Chem. Eng. Trans., 2017, 62:1345
[4]. Guide I.S., Safety Series No NS-G-1.7 Protection against Internal Fires and Explosions in the Design of Nuclear Power Plants. IAEA, 2004
[5]. Beard A.N., Burke G., Finucane M.T. Nucl. Eng. Des., 1991, 125:367
[6]. Simion G.P., VanHorn R.L., Smith C.L., Bickel J.H., Sattison M.B., Bulmahn K.D., Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR Plants (No. NUREG/CR-5759; EGG-2640). Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution; EG and G Idaho, Inc., Idaho Falls, ID (United States). 1993
[7]. Roewekamp M., Berg H.P., SMiRT 23. 14th international seminar on fire safety in nuclear power plants and installations. Gesellschaft fuer Anlagen-und Reaktorsicherheit (GRS) gGmbH, 2015
[8]. DiNenno P.J., SFPE handbook of fire protection engineering. 2008
[9]. Berg H.P., Fritze N. J. Konbin, 2012, 23:5
[10]. Bruynooghe C., Bucalossi A., Fire protection in NPP: Challenges posed by fires to the Structures. Systems and Components of Nuclear Power Plants, Report n1EUR-23231 EN from the Joint Research Centre (European Commission), 2008
[11]. Kisner R.A., Wilgen J.B., Ewing P.D., Korsah K., Antonescu C.E., Regulatory guidance for lightning protection in nuclear power plants. United States: American Nuclear Society-ANS. 2006
[12]. Jiaxu Z., Qiang S., Juan L., Zhiwei F., Wei S., Jiayun C., Chunming Z., Jianshe C., Procedia Eng., 2012, 43:318
[13]. Lee B.T., Heat release rate characteristics of some combustible fuel sources in Nuclear Power Plants (NBSIR 85-3195). Gaithersburg, MD: National Bureau of Standards, 1985
[14]. Ramana M.V., Nayyar A.H., Schoeppner M., Sci. Global Secur., 2016, 24:174
[15]. Asamoah, M., Díaz, P., Dies, J., de Blas, A., J. Appl. Sci. Technol., 2019, 23:10
[16]. Wu Y., Fire Compartment and Fire Barrier Evaluation in the NPP Fire PSA. In International Confernece Pacific Basin Nuclear Conference Springer, Singapore. 2016, 351
[17].   Alem M., Teimouri A., Salavati H., Kazemi S., Chem. Methodol., 2017, 1: 49
[18].   Ali-Asgari Dehaghi H.R., Jabbari H., Kalaee M.R., Mazinani S., Taheri M., Sedaghat N., Chem. Methodol., 2019, 3:306
[19].   Budykina T.A., Budykina K.Y., RUDN J. Ecol. Life Safety, 2017, 25:132
[20]. Dombrovsky L.A., Levashov V.Y., Kryukov A.P., Dembele S., Wen J.X., Int. J. Therm. Sci., 2020, 152:106299
[21]. Chhabra A.K., Talukdar P., Int. J. Numer. Method. H., 2019, 29:146
[22]. Acosta C.A., Bhalla A., Guo R., Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XIII, International Society for Optics and Photonics, 2019, 11123: 111230Y
[23]. Ezhov V.S., Semicheva N.E., Bredikhina N.V., Semerinov V.G., Ezhova T.V., Chem. Pet. Eng., 2019, 55:514
[24]. Chernoivanov V., Katkov A., Gabitov I., Yukhin G., Martynov V., Khasanov E., Mudarisov S., Baltikov D., Khammatov R., Kovalev P., Bulg. J. Agric. Sci., 2019, 25:45
[25]. Gustafsson M., Schab K., Jelinek L., Capek M., New J. Phys., 2020, 22:073013
[26]. Pustovalov V.K., SN Appl. Sci., 2019, 1:356
[27]. Cheng Z., Shuai Y., Gong D., Wang F., Liang H., Li G., Sci. China Technol. Sci., 2020, 3:1