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 This paper examined interaction of Graphene with Amoxicillin antibiotic 
through density functional theory (DFT) and by using molecular docking 
method. For this, the structures of Amoxicillin and, Graphene were 
initially optimized with Gaussian program. Then, by using the molecular 
docking strategy and its grading system, we computed the arrangement 
of 10 structures with additional negative binding energy and a fixed state 
compared with other samples. Finally, for the most fixed arrangement 
with Graphene, molecular orbitals evaluations were conducted, and 
binding energy along with thermodynamic evaluated, the results 
indicated that the adsorption of Amoxicillin antibiotic on Graphene was 
an exothermic. Finally, the QTAIM calculations were performed to 
evaluate the type of interaction and bonds created between amoxicillin 
and graphene. 
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Introduction 

Graphene is a sheeting of genuine carbon, in which 

each atom is available for chemical reaction from 

both sides due to its flat structure [1]. It is used to 

design a new generation of chemical and biological 

sensors due to its outstanding physical and 

chemical properties, excellent catalytic activity, 

and low production cost [2]. The performance of 

various voltammetry biosensors based on 

graphene nanocomposites is well defined [3], and 

the use of graphene in nanocomposites in the 

application of biosensor due to its unique 

properties in the field of optimal electrical 

conductivity [4], flexibility, lightness, and good 

strength has improved the performance and 

progress in the properties of biosensor. Graphene 

also improves the linear periphery and the 

optimal correlation between concentration and 

flow. Likewise, the detection limit, the sensitivity 

of the sensor, and its response time are other 

things that the use of graphene has led to the 

improvement of their properties [3]. Among the 

major environmental problems are drug 

contaminants, including antibiotics, which are 

significantly present in the environment due to 

their high consumption [5]. Because after affecting 

the body of patients, they enter the wastewater 

treatment processes along with body excreta. 

Antibiotics prevent biological wastewater 

treatment and they cause a lot of problems in the 

environment [6] and are among the main causes 

of drinking water [7]. Therefore, it seems 

necessary to research sensors that detect 

antibiotics such as amoxicillin. In this paper, by 

using computational chemistry and molecular 

docking method [8], we examined the interaction 

of amoxicillin with graphene to investigate 

thermodynamic variables and the extent of heat 

from the absorption of antibiotic amoxicillin 

through these calculations to see the amoxicillin 

sensor (Figure 1) [5]. Therefore, we employed 

Gauss View software to develop the graphene 

sensor with amoxicillin. To minimize the energy of 

systems, first, the explored systems were 

geometrically optimized by the Gauss software via 

B3LYP model and 6-31G basis set [9]. However, 

the physical features of the systems were 

examined by using the Autodock Tools program, 

and finally, the nature of the resulting bonds was 

calculated via Quantum Theory of Atoms In the 

Molecule QTAIM [10]. Physical chemistry indexes 

and features were estimated, compared, and then 

the most steady conditions and positions of 

graphene were identified by the antibiotic 

amoxicillin. 

 
Figure 1: a) Chemical Amoxicillin structure, b) Graphene structure; Experimental (carbon: gray, nitrogen: blue, 

oxygen: red, hydrogen: white, and sulfur: yellow) 

 

Computational methods 

Initially, amoxicillin and graphene structures were 

extracted by nanotube modeller 1.3.0.3 [11], and 

Gauss View 5.0 software [12]. In the next step, 

geometric optimization was carried out via the 

density function hypothesis technique and 

computational level: B3LYP / 6-31G (d). This 

computational level was chosen since its findings 

were in good line with empirical data in previously 

conducted studies. All computations were 

conducted at a temperature and a pressure of 298 
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K and 1 atmosphere, respectively by using 

Gaussian software [13]. Then, it was used by Auto 

Dock software (Auto Dock, version 4.2). Auto Dock 

created a sequence of ten conformation designs, 

indicating the ten greatest anticipating models 

about the way the antibiotic could possibly 

cooperate with the Graphene. Auto Dock 

generated a sequence of energy values (binding 

energy, ligand proficiency, Van der Waals, 

hinderance constant, intermolecular energy, 

electrostatic, and overall inner energy) via a  

program [8]. The process under investigation was 

expressed as the following formula: 

Amoxicillin + adsorbent(G)→ Amoxicillin –adsorbent(G) 

 

Results and Discussion 

Discussion and results 

To detect the most steady arrangement of 

amoxicillin with graphene, as can be seen in Figure 

2, we employed the docking technique via Auto 

dock software [14]. Docking is the process of 

determining the orientation and binding energy of 

two compounds. In this work, the interaction was 

examined between amoxicillin and graphene as a 

receptor in its active site. Docking is a molecular 

mechanic computation. That automated molecular 

algorithm connects a smaller compound and 

specifies the (ligand) to the active site of the larger 

molecule (target). This method includes 

determining the composition orientation, the 

geometric structure of the conformation 

(formulation), and the ranking. Ranking can be a 

measure of connection energy, free energy, or a 

numerical qualitative measure. Each automatic 

docking algorithm attempts to put the 

combination in active position in different 

orientations and formulations and calculate a 

score for each [15]. 

 

Figure 2: Ten steady complexes (AG) created from molecular docking computations, Amoxicillin (A) with 
Graphene(G), because of their higher negative binding energy compared with other instances (Amoxicillin: pink, 

graphene: green) 

Table 1 and Figure 3 indicate the results of 

amoxicillin derivatives with graphene, suggesting 

that the energy changes were not positive, so it 

reflects the exothermic of the adsorption 

procedure in these arrangements. Hence, we 

expect the physical adsorption of amoxicillin to 

occur in the interplay of graphene with 

amoxicillin. Furthermore, this nanostructure can 

be used for producing novel thermal sensors to 

calculate amoxicillin. These sensors generally 

measure the temperature variations resulting 

from the development of a procedure by using an 

extremely precise and sensitive thermistor that is 

used as an indicator to calculate the volume of 

analytes. 
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Table 1: In normal circumstance (T= 298.15 K, p=1 atm); the structures computed by docking method for 

adsobtion amoxicillin on graphene (AG) 

Results of docking for AG 

 Ki BE IME IE TE UEE 

1 30.36 -6.16 -8.25 -1.79 2.09 -1.79 

2 48.30 -5.89 -7.98 -1.97 2.09 -1.97 

3 56.16 -5.8 -7.89 -2.46 2.09 -2.46 

4 65.00 -5.71 -7.8 -2.55 2.09 -2.55 

5 59.36 -5.77 -7.85 -2.44 2.09 -2.44 

6 61.39 -5.75 -7.83 -2.51 2.09 -2.51 

7 69.11 -5.68 -7.76 -2.56 2.09 -2.56 

8 70.98 -5.66 -7.75 -2.5 2.09 -2.5 

9 70.32 -5.67 -7.75 -2.53 2.09 -2.53 

10 86.64 -5.54 -7.63 -2.61 2.09 -2.61 

BE (kcal/mol) Binding Energy 

IME (kcal/mol) Intermolecular Energy 

IE (kcal/mol) Internal Energy 

TE (kcal/mol) Torsional Energy 

UEE (kcal/mol) Unbound Extended Energy 

Ki Inhibition Constant 

All energy values possess units of kcal/mol;  

BE: It is obtained from this Equation [= (IME) + (IE) + (TE)- (UEE)] 

Notice: IME= [(a) + (b)] 

(a): VDW + H bond + dissolve 

Abbreviations: VDW: It is Van Der Waals energy; H bond: It is Hydrogen Bonding; Dissolve: It is 

dissolving Energy. 

(b) Electrostatic energy (kcal/mol) 

 

Figure 3: The results of docking for A G 

Analysing the findings of molecular orbitals 

computations  

HOMO in chemistry refers to the High Occupied 

Molecular Orbital, while LUMO indicates Low 

Unoccupied Molecular Orbital or vacant molecular 

orbital. In addition, energy gap refers to the 

energy differentiation between the two orbitals, 

which is generally characterized by the HLG sign, 

and formula 2 is applied to measure it. In this 

formula, EH and EL refer to the HOMO and LUMO 

orbital energies, respectively. The energy gap is 

straight associated with the electric conductivity 
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of molecules. Indeed, mixtures with little energy 

gaps can transfer electrons more effortlessly via 

the prohibited band into the conduction band. 

Thus, compounds with smaller energy gaps 

exhibit greater electric conductivity compared 

with materials with profound energy gaps. The 

findings illustrated in Table 2 demonstrate that 

the level of energy gap after absorbing amoxicillin 

reduced dramatically on the graphene surface. 

Indeed, the amoxicillin conductivity enhanced 

sharply after interplay with graphene. Another 

noteworthy issue is that we can utilize the rise in 

conductivity induced by the absorption on the 

graphene surface to detect and calculate them. 

Otherwise, graphene is employed to produce 

novel electrochemical sensors for calculating 

amoxicillin. The next explored variable is chemical 

stiffness (η) as the amount drawn from equation 

3. Chemical stiffness can be a reliable account of 

the reactivity of a novel material since molecules 

with softer structures and lower chemical 

stiffness can more effortlessly alter their electron 

thickness. Consequently, the electron transfer, 

which is necessary for chemical interactions, takes 

place = easier and more suitable in soft materials. 

Table 2 demonstrates that the amoxicillin 

reactivity is enhanced after being absorbed on 

graphene since all derivatives extracted via 

interaction with graphene possess less chemical 

stiffness compared with intact amoxicillin. The 

value of chemical potential (µ) utilized for 

obtaining the other variables was also measured 

based on equation 4. Electrophilicity (ω) and the 

highest charge transmitted to the system (∆Nmax) 

are both acceptable features that show the 

inclination of a material to attract electrons. These 

two features were measured via equations 5 and 

6, respectively. When two molecules start reacting 

with each other, one molecule plays the role of an 

electrophile whereas the other functions as a 

nucleophile. Moreover, a molecule with greater 

electrophile capacity and charge potential is 

tended to serve as a receptor electron. However, a 

compound with little electrophile capacity and 

charge potential will be more inclined to deliver 

electrons to the system. According to the results 

illustrated in the table, amoxicillin is inclined to 

act as an electron donor in reaction with the 

nanostructure as its electrophile potential 

amounts to 0 electron volts. Conversely, intact 

graphene acts as an electron receiver since its 

electrophile capacity amounts to 0.01 electron 

volts. Hence, we can conclude that graphene is 

able to be involved in electrochemical reactions 

with amoxicillin. Furthermore, Table 2 reveals 

that the amoxicillin electrophilicity raised after 

absorption on the graphene surface. 

Consequently, we conclude that the amoxicillin 

tendency towards adsorbing electron was 

enhanced after reacting with nanostructure. Also, 

bipolar time of the investigated structures was 

examined. This feature is a suitable benchmark for 

measuring the solvency level of molecules in polar 

solvents. Compounds with greater dipole time will 

have superior solvency in water, while molecules 

with less dipole time would have less solvency in 

polar solvents. As it can be observed, the dipole 

time of amoxicillin rises after absorption on the 

graphene surface. Accordingly, graphene 

derivatives with amoxicillin will manifest greater 

solvency in water compared with amoxicillin. 

  

Table 2: Energy levels of HOMO and LUMO orbitals, chemical potential, electrophilicity, chemical stiffness, 

energy gap, highest load transmitted to the system, dipole time for amoxicillin, and its most fixed complex with 

graphene 

 EH EL HLG µ ƞ S ω Х ΔNmax 
Dipole 

moment 

A -6.02 7.18 13.20 0.58 6.60 0.15 0.03 -0.58 -0.09 1.98 

G -4.54 0.27 4.80 -2.13 2.40 0.42 0.95 2.13 0.89 9.45 

A G -4.54 0.12 4.66 -2.21 2.33 0.43 1.05 2.21 0.95 10.64 

E HOMO(eV), E LUMO (eV), Gap Energy (eV), ƞ:Hardness(eV), µ: Chemical Potential(eV), S: Softness (eV), ω: 

Electrophilicity(eV), ΔNmax (eV), Dipole Moment (Debye) 
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Calculations of computed HOMO and LUMO 

frontier molecular orbitals show that electron 

transfer does not occur, so the interaction is of 

weak van der Waals type (see Figure 4). 

 

Figure 4: a) DFT-computed HOMO and LUMO frontier molecular orbitals and DOS maps for amoxicillin, b) 
complex of graphene with amoxicillin: AG 

HLG=EL − EH (2) 

η = (EL − EH)/2 (3) 

µ = (EL + EH)/2 (4) 

ω = µ2/2η (5) 

∆Nmax=− µ/ η (6) 

Electrostatic capacity diagrams are exceptionally 

valuable three-dimensional maps of molecules. 

They make it possible to visualize the charge 

dispersions of molecules and charge-related 

features of molecules. In addition, they lead to 

observe both dimension and form of molecules. In 

chemistry, electrostatic potential diagrams are 

valuable in anticipating activity of complex 

molecules. To facilitate the data interpretation 

related to electrostatic potential energy, a colour 

spectrum, with red and blue as the least and the 

highest electrostatic potential energy values, 

respectively, was used to represent the different 

levels of electrostatic potential energy values. 

Therefore, red indicates negative charge, while 

blue represents positive charges. In other words, 

the red colour with negative charge suggests the 

lowest electrostatic capacity (i.e. it is loose or 

additional electrons) and plays the role of an 

electrophilic attacker. The blue colour 

demonstrates the highest electrostatic capacity 

and functions conversely [16].  

Due to the shapes of electron surfaces, contour 

diagrams of the molecular ESP [17] and the 

positions of the HOMO and LUMO orbitals on the 

surface of the drug, it appears that at the position 

of benzene and the oxygen ring on the ring, a 

higher electron cloud density [5] is located. 

Therefore, in electrophilic reactions are occurred 

through this position. on the other hand, the 

illustrations of more stable structures produced 

from molecular docking calculations, and the 

theoretical findings derived from this research are 

consistent with each other (see Figure 5). 

Quantum theory of atoms in molecules (QTAIM) 

We applied the AIM analysis to identify the 

existence of bond critical points (BCPs) of the 

intramolecular bonds and to calculate their 

energies, as represented in Table 3. These features 

are listed in Table 2 for the intramolecular bonds 

in the explored molecules. A significant 
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relationship was found between the values of (rc) 

and L(rc). The positive Laplacian  (rc) values in 

Table 2 demonstrate electronic charge draining 

along the bond way, which could characterize 

closed shell interactions bonds. Table 3 illustrates 

the measured bonds energies as follows: Vc 

indicates the density of nearby potential electron 

energy, and Gc denotes the density of nearby 

kinetic electron energy. Moreover, the Gc/Vc ratio, 

where Vc denotes the density of nearby potential 

electron energy, and Gc refers to the density of 

nearby kinetic electron energy. Finally, we used 

the Gc/Vc ratio as an indicator of the nature of 

bonds: for Gc/Vc>1, the bond is noncovalent, 

while for 0.5<Gc/Vc<1, it is somewhat covalent. In 

addition, for Gc/Vc<0.5, the bond is covalent (EA., 

B, kcal.mol-1), and bond critical position data (in 

a.u.) from quantum theory of atoms in molecules 

analysis [18-31]. 

 

Figure 5: Diagram of a molecule surface or electrostatic potential (ESP) presents incomplete dispersion of 

alteration along the molecule surface. These diagrams are exceptionally worthwhile and can describe molecular 

polarity and make the positioning of the dipole arrow possible. The ESP surface is made with red areas and blue 

areas indicating negative and positive, respectively. Notice: Graphene hydrogens are avoided to better 

understand the shape 

Table 3: Bond critical points (BCPs) of the intramolecular bonds and to calculate their energies for A CG 

Number (rc) L(rc)  (rc) E(A…B)=/2 Gc/Vc Bond type 

79(3,-1) 0.0073 -0.0052 0.0210 -1.4921 1.0519 non-covalent 

80(3,-1) 0.0143 -0.0146 0.0584 -3.9959 1.0730 non-covalent 

83(3,-1) 0.0027 -0.0028 0.0112 -0.4984 1.3830 non-covalent 

84(3,-1) 0.0150 -0.0139 0.0556 -3.4293 1.1354 non-covalent 

85(3,-1) 0.0100 -0.0103 0.0411 -2.2212 1.2251 non-covalent 

86(3,-1) 0.0156 -0.0117 0.0468 -3.3365 1.0500 non-covalent 

94(3,-1) 0.0026 -0.0039 0.0155 -0.4267 1.9263 non-covalent 

97(3,-1) 0.0012 -0.0015 0.0061 -0.2074 1.6479 non-covalent 

Quantum theory of atoms in molecules 

The most often used criteria of the existence of 

bonding interactions are the electron density (rc) 

and the Laplacian of electron density  (rc) at the 

BCPs. These parameters for the intramolecular 

bonds in the studied molecules are presented in 

Table 3. There is a good correlation between the 

(rc) and  (rc) values. The positive values of 

Laplacian  (rc) in Table 3 indicate depletion of 

electronic charge along the bond path, which is a 

characteristic of closed shell interactions bonds. 

Table 2 lists the bonds energies calculated similar 

to the following equations: 
EA...B  =1/2Vc  (7) 

Vc  =1/4 (rc) 2Gc (8) 

Where, Vc is the local potential electron energy 

density and Gc is the local kinetic electron energy 

density. Finally, the Gc/Vc ratio where, Vc is the 

local potential electron energy density and Gc is 

the local kinetic electron energy density. Finally, 

the Gc/Vc ratio, was used as a criterion of the 

nature of bonds: for _Gc/Vc>1, the bond is 

noncovalent, whereas for 0.5<Gc/Vc<1, it is 
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partially covalent and Gc/Vc<0.5 it is covalent. 

bonds (EA.B, kcal.mol-1), and bond critical point 

data (in a.u.) from quantum theory of atoms in 

molecules analysis Equation 7 and 8 (see Figure 6 

and 7). 

 

Figure 6: Contour diagrams of the molecular electrostatic potential (ESP) of amoxicillin and AG in its ground 
state. Contours of places shadowed in dark grey indicate places of negative ESP, while the bright red places 

indicate the ESP positive state. Calculations were done at the B3LYP/6-31G* level of hypothesis. Electrostatic 
potential from Total SCF Density (npts = 118, 111, 76; res (A) = 0.176392, 0.176392, and 0.176392), P (0,0,1,0)). 

Electrostatic potential from Total SCF Density, Electrostatic potential from Total SCF Density (isoval = 0.0004) 

 

 

Figure 7: Critical points of the intramolecular bonds
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Conclusion  

Adsorbing Amoxicillin on the Graphene surface 

was examined by using the molecular docking and 

density function theories. The computed binding 

energy indicated the exothermic and spontaneous 

absorption procedure of this drug and this 

procedure was measured at room temperature. In 

addition, the analysis of molecular orbitals 

suggested that complex Graphene with amoxicillin 

had more electrophile potential and were more 

conductive and reactive compared with intact 

Amoxicillin. It was also found that Graphene could 

be used to create novel electrochemical sensors to 

identify and measure Amoxicillin. Graphene is a 

chemical sensor to detect compounds that 

structurally bear a close resemblance to 

Amoxicillin. Based on the measured results, it is 

recommended that the function of Graphene in 

removing and measuring Amoxicillin and impact 

of these nanostructures on their energy qualities 

be explored empirically. Likewise, since the 

molecular bond between amoxicillin and 

graphene is weak, we can look at graphene as a 

suitable sensor for amoxicillin. 
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