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 Clean hydrocarbon is an alternative source of other fuels like coal and natural 
gas. Based on the literature, the significance of hydrocarbon production via 
Fischer-Tropsch synthesis (FTS) process cause to develop a new 
mathematical algorithm response surface methodology (RSM)/ design of 
experiment (DOE). The influence of important factors, like pressure, 
temperature and feed ratio (H2/CO) on the performance of the FTS are 
examined. The experiments are conducted in the range of: P = 1.9-3.75 bar, T 
= 523-563 K, and H2/CO ratio = 0.85-1.85 at set space velocity (2000 h-1). A 
second-order model is developed via RSM in terms of independent input 
variables to describe the CO conversion and selectivity of CO2 and C5+ as the 
responses. It is concluded that at low temperature and H2/CO ratio, CO2 
selectivity increase significantly and C5+ selectivity decreases appreciably 
when pressure increases. Moreover, at low pressure an increase in 
temperature, reduces CO conversion. According to contour plots and analysis 
of variance (ANOVA), it is illustrated that the maximum CO conversion was 
obtained at P = 3.21 bar, T =563 K and H2/CO = 1.85 while for C5+ the 
maximum is observed at P = 3.67 bar, T = 529.1 K, and H2/CO = 0.91, and CO2 
selectivity is minimized at P = 1.93 bar, T = 563 K and H2/CO = 1.85.  The 
predicted conversion and selectivity are in good accordance with 
experimental results which is an indication of the accuracy of RSM 
methodology in designing and optimizing the FT process. 
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Introduction 

Owing to the decreasing fossil fuel resources and 

environmental challenges related to the increase 

of anthropogenic CO and CO2 emissions, 

countless attention has been paid to investigate 

various methods of using these compounds as a 

feedstock for production of various chemicals 

and fuels [1-6]. FTS is a catalytic reaction process 

include a mixture of H2 and CO converts into the 

hydrocarbon mixture compounds (CnH2n+2, 

CnH2n) [7-10].  The fundamental and practical 

significance of the FTS process draw 

considerable attention as an aromatic and sulfur 

free fuel. Therefore, many researches have been 

investigated this process from various 

perspectives include catalyst design, operating 

conditions and reactor configuration [11-13]. 

Moreover, numerous factors in FTS process are 

significant like pressure, temperature, feed ratio 

(H2/CO), space velocity (GHSV), catalyst type and 

deactivation rate of catalyst [7, 14, 15]. 

The kinetic rate and operating conditions of the 

FTS reaction is significant for developing it to the 

industrial scale, being a prerequisite for the 

industrial process design, simulation and 

optimization [16]. As shown in Figure 1 CO rate 

consumption toward hydrocarbon production 

have been obtained in different pressures, molar 

feed ratio (H2/CO) and temperatures. The low 

and high temperature FTS aims to produce heavy 

cuts like wax, diesel and lighter cuts like gasoline 

and diesel respectively as illustrated in Figure 1 

(A). The reactors are considered based on the 

type of catalyst and the range of temperature in 

which these reactors run. Figure 1 (B) 

demonstrates that, In case of temperature rises 

toward producing the low boiling products, 

fluidized-bed reactor is the suitable reactor, and 

toward achieving high boiling products at 

reduced temperatures, the slurry phase and 

fixed-bed reactors are among the appropriate 

alternatives. Moreover, operating conditions and 

rate of reaction investigation can be reliable, in 

case of being enough the employed experimental 

data based on literature. As known, getting the 

abundant experiment reactor data is a costly and 

time-consuming procedure. Therefore, a 

mathematical model is best tools for estimating 

the experimental data that can be implemented 

in industrially scale [17-19].  

A 

 

B 

 
Figure 1: A) Overall process for the hydrocarbon production via the FTS, B) Impact of the process parameters on 
the product distribution in various types of reactors [20] 
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DOE is extensively used for various purposes 

such as optimization, design, and development of 

novel catalyst (include binder, promoter, base 

and active site), reactor configuration and 

operating conditions [21, 22]. DOE has several 

benefits such as decreasing cost and time. 

Generally, kinetic rate equations of FTS in term of 

nonlinear behavior and modeling based on 

statistical techniques have been studied in some 

researches. 

The application of ANN in kinetic study and 

prediction of FTS products was investigated by 

Shiva et al. [23] and Sharma et al. [24], but 

application to kinetic study by RSM/ANN and 

optimization with hybrid of ANN/GA have not 

been addressed. However, the combination of 

RSM/ANN with ANN/GA may help us to evaluate 

the efficiency and optimize the conditions of 

reaction. This procedure could help us do better 

data fitting of kinetic rate equations and 

ultimately result in a successful optimization 

studies. The modeling of FTS reactor on various 

factor such as temperature, pressure and feed 

ration have been discussed. 

As illustrated in Figure 2, Mansouri et al 

employed the Box-Behnken design (BBD) 

consisting of 15 experiments for developing 

model for reaction rate of FTS. The parameters in 

current research were changed such as the 

temperature, H2 and CO partial pressure [25]. 

However, interaction of operating conditions and 

rate of feed ratio consumption via RSM based on 

the central composite design (CCD) and 

experimental design planning to create model for 

CO hydrogenation to hydrocarbon have not been 

reported. For the strategy of experimental 

design, several techniques illustrated in Figure 2 

have been effectively exploited to the 

manufacturing: Central composite design (CCD), 

Fractional or full factorial design (FFD), Latin 

hypercube design (LHD) and Box-Behnken 

design (BBD). Among them, FFD analyzes all the 

factors at all p levels, and it is proficient of 

assessing interaction effects clearly by 

determining all feasible variables patterns. 

However, FFD enhances computational intensive 

in case of resolving second or higher order 

polynomial model. Hence, the FFD, including the 

famous orthogonal array assuming parameters 

independence is employed to the DOE. Likewise, 

CCD has as much data as the three-level FFD with 

fewer experiments. However, for the two-level 

experiment, CCD contains FFD, axial points and 

one center point, which would meaningfully 

improve the experiments data when large 

numbers of analyzed parameters are involved. In 

case of lack of subsequent experiments, BBD 

needs fewer designed points than CCD and is 

more appropriate for factors with non-linear 

elements [26]. 

 
Figure 2: Schematic of all experimental strategies for RSM with special emphasis on scope of this research [26]
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RSM is an impressive technique in current 

research in comparison with all other statistical 

methods. Due to, RSM is based on a set of 

statistical methods for DOE, developing the 

models, assessing the influences of parameters 

and try to find the optimum terms. Therefore, it 

can be concluded that RSM target is 

implementing the systematic modeling, 

optimizing and demonstrating the performances 

via statistical/ regression/graphical technique 

that lead to more understandable of the complex 

procedures. Recently, RSM has been employed to 

evaluate and optimize interactive effects of 

independent parameters in numerous 

biochemical and chemical  processes such as, 

heterogeneous biodiesel production from waste 

cooking palm oil [22], Optimization of synthesis 

conditions of carbon nanotubes via ultrasonic-

assisted floating catalyst deposition [21], steam 

reforming of methanol [27], Orthogonal Turning 

Process [28], water nanofluids pool boiling heat 

transfer coefficient at low heat fluxes [29].  

Moreover, RSM and statistical methodologies 

have been exploited widely in several scientific 

fields such as reactor and catalyst  design and 

also estimation of process operating conditions 

[30],  a few researches for CO hydrogenation can 

be found based on statistical methodologies. 

Though, interaction of operating conditions and 

rate of feed ratio consumption using RSM based 

on the CCD and experimental design planning to 

develop model for FTS have not been reported. 

In FTS, product quality can be affected by several 

factors like pressure, space velocity, 

temperature, feed ratio (H2/CO), properties of 

catalyst, time-on-stream, selectivity, and 

reduction of catalyst. Considering these various 

factors’ influence on FTS product distribution, 

optimization of these parameters to achieve the 

maximum process efficiency is a challenging task. 

RSM is a technique in order to develop, enhance 

and optimize empirical model building [22, 31].  

The objective of DOE is to enhance a response  

that is affected through various independent 

input datas [32]. Modeling methods can be 

developed by several techniques such as, RSM, 

Taguchi  or artificial neural network (ANN) [33], 

principal component analysis (PCA) [34]. 

Exploiting statistical techniques for FTS has been 

studied in many articles [35-37]. Generally, these 

studies focused on two or three independent 

variables [38-41]. However, in this research RSM 

has been employed in order to understand the 

interaction of effective parameters, like 

temperature, feed ratio (H2/CO) and pressure on 

the performance of the FTS over Iron catalyst in 

packed-bed reactor.  At first experimental section 

based on literature then experiment design, 

finally results and discussion include contour 

plots and analysis of variance (ANOVA). 

Material and methods  

Experimental section based on literature 

According to the literature, sol-gel method is the 

efficient catalyst manufacturing method for 

synthesis 40%Fe/60%Ni/40 wt.% Al2O3 catalyst. 

The micro packed-bed reactor was constructed 

from stainless steel. The detailed explanation of 

the experimental set-up can be found in 

literature [42-45].  

In a typical run, 1 gr of catalyst powder with Dp < 

150 μm , to lower the internal mass diffusion 

resistance, was mixed with similar quartz wool 

(150 < Dpq < 250 μm) in order to obtain a 

uniform temperature in the packed-bed. 

Furthermore, the pattern of feed was assumed to 

be plug-flow, and the empirical reaction rate was 

defined according to Eq. (1): 

 

            (1) 

where, rCO is rate of CO consumption, FCO and 

 are input CO flow rate and catalyst weight, 

respectively [46, 47]. 

Response surface methodology (RSM) and Design 

of Experiment (DOE) 

As illustrated in Figure 3 merge of these 

algorithms can anticipate the interaction 

/dependency between the values of some 
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measurable outputs and those of a set 

experiments datas affect the outputs. Moreover, 

response value at different process conditions 

can be predicted. Finally the values of factors 

which create the optimum and best values of the 

response cab be found [48] . 

 

Figure 3: A new mathematical algorithm RSM/ DOE [48] 

 

RSM is a mathematical/statistical method for 

optimization and modeling processes. The RSM 

can be employed in case of when several input 

variables affect quality or quantity  characteristic 

of the response [49, 50]. In other word; the 

significant steps of RSM include: I) experiment 

design selection, II) coefficient estimation 

according to the mathematical model and 

response prediction, and III) model adequacy 

confirmation via variance analysis (ANOVA). 

In fact, RSM is used as a principle  tool for the 

enhancement of existing hydrocarbon designs, 

along with the design, formulation and 

development of new hydrocarbon [34].  

In the RSM, coefficient estimation according to 

the mathematical model and response prediction, 

between inputs and output can be derived as 

follows Eq. (2): 

 (1) 

where y is the response, f is the function of 

response, x1, x2, x3, …, xn  are the inputs and  is 

the fitting error. A second order polyminal 

regression model can utilized to fit the data. The 

model of current study can be presented as 

follows Eq. (3): 

 

(2) 

where αi and αii denote linear and quadratic 

effects of xi and αij indicate the interaction 

between xi and xj, respectively. The RSM is a step-

by-step procedure that contains the following 

seven steps: 

1. Definition of input factors and the desired 

responses. 

2. Central composite design (CCD) and 

experimental design planning. 

3. Accomplishment of regression analysis for the 

polynomial model. 

4. ANOVA calculating and finding the affected 

parameters. 

5. Proposing a second-order polynomial model 

for response. 

6. Optimization of the design parameters 

considering design constraints. 

7. Validation and performing the experimental 

and design variables. 

The ANOVA for regression importance is shown 

in Table 1. 
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Table 1: ANOVA based on the regression importance 

Variation source  Sum of squares Freedom degree Mean square 

Regression 

 
  

Error 

 
  

Where n is the experiments run number and p 

shows the model parameters number.  

The regression accuracy is determined through 

the Eq. (4) as follows: 

 
(3) 

The modification of R2 is the adjusted R2 that is 

adjusted for explanatory terms of model. 

Adjusted R2 is presented in Eq. (5) as follows: 

 
(4) 

The P-values and T-test were utilized to 

investigate the coefficients importance obtained 

via regression. 

Result and Dissection 

In current research, the influence of independent 

factors such as: pressure (x1), temperature (x2) 

and feed ratio H2/CO (x3) at set space velocity 

(GHSV=2000 h-1) on four responses; %CO 

conversion and the selectivity of CO2 and C5
+ have 

been investigated. The prediction capability of 

experimental data based on literature compared 

with RSM responses is shown in Table 2. 

Table 2: Operating conditions and experiment data as input data, and modeling output  

Operation conditions Experimental data based on literature Predicted data by RSM 

P (x1) T(x2) H2/CO (x3) %CO conv. C5+ selec. CO2 selec. %CO conv. C5+ selec. CO2 selec. 

3.25 533 0.70 41.70 51.42 48.12 40.13 49.25 49.67 
2.35 553 0.75 61.92 53.31 41.73 63.11 52.20 42.85 
3.35 563 0.75 52.37 47.31 45.42 51.11 49.33 47.02 
2.95 563 0.85 55.40 44.86 43.36 53.23 42.76 44.70 
2.35 563 0.85 69.96 47.28 41.03 68.20 49.11 42.67 
2.35 533 0.85 54.40 53.41 43.73 55.23 51.55 42.56 
1.95 543 0.85 77.03 56.02 42.57 78.78 54.76 43.66 
3.75 543 0.85 46.16 59.16 47.43 48.12 60.26 46.20 
1.95 563 0.85 84.39 47.10 40.76 82.78 45.78 38.90 
1.95 553 0.85 81.66 53.08 41.22 78.94 51.16 42.76 
1.90 523 0.85 74.04 52.21 45.12 75.31 51.33 44.18 
1.95 523 1.24 69.22 50.77 44.39 72.24 52.07 45.54 
2.25 523 1.38 56.49 50.94 44.61 54.38 52.30 43.23 
2.70 523 1.70 51.75 52.66 44.63 52.94 50.13 43.20 
3.45 533 0.85 43.32 56.52 48.21 44.56 58.12 47.12 
1.95 523 0.85 72.04 52.25 45.16 70.07 54.37 46.41 
2.85 543 1.10 51.40 54.05 43.56 52.75 55.93 42.18 
2.85 523 1.10 49.82 50.75 46.51 48.46 49.05 45.22 
2.70 563 1.10 56.63 46.27 41.20 57.71 44.43 42.44 
3.25 543 1.24 51.40 58.77 44.85 52.76 57.13 43.50 
2.95 533 1.24 51.27 51.95 44.40 52.32 53.28 45.34 
3.10 553 1.24 51.87 54.60 42.65 50.23 53.20 44.21 
1.95 533 1.40 68.47 51.11 42.36 69.75 53.12 43.38 
2.75 543 1.45 52.24 55.39 42.14 51.11 54.43 41.10 
1.95 553 1.45 77.82 51.73 40.08 76.05 53.44 41.12 
1.95 563 1.45 80.51 45.96 39.96 82.29 43.23 38.04 
2.35 533 1.65 58.47 51.01 42.49 59.13 52.55 43.70 
1.95 543 1.70 72.49 53.27 40.98 69.31 54.77 42.13 
2.75 553 1.80 54.94 56.30 40.60 53.58 55.20 38.11 
1.95 553 1.85 78.54 49.62 39.70 77.13 48.32 41.25 
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To examine the goodness of model fit, the normal 

probability plot of residuals was employed. In the 

case of residuals with normal distribution, 

commonly all points of the plot form are fit over 

a straight line. Figure 4 illustrates that three 

responses residual plots are distributed 

normally. 

 
Figure 4: Normal probability plots of three responses 

For the evaluation of the model parameters, 

ANOVA was employed and some of statistical 

terms such as R2, R2adj for all responses were 

derived, that depicted in Table 3. The accuracy of 

the model is examined via lack-of-fit tests. When 

data has replication, the pure error lack of fit test 

is automatically performed by RSM. The null 

hypothesis would be met if P-value is the 

probability of achieving a consequence at least as 

extreme as the one in the sample data assuming. 

In case of the P-value to be less than 0.05, the 

parameters effect on the output response would 

be impressive. Moreover, coefficient of SE would 

be defined based on the estimated standard 

deviation of the coefficient estimate [42] (see 

Table 3).  

Table 3: Regression coefficient and ANOVA of the RSM modeling for all responses 

 %CO conversion CO2 selectivity C5+ selectivity 
Variables SE coeff. T-value P-value SE coeff. T-value P-value SE coeff. T-value P-value 
Constant 1.63 33.27 0.000 0.368 116.35 0.000 0.777 71.96 0.000 

P (x1) 1.08 -11.66 0.000 0.244 6.39 0.000 0.515 2.49 0.032 
T(x2) 1.08 5.93 0.000 0.244 -8.92 0.000 0.515 -6.37 0.000 

H2/CO(x3) 1.08 1.68 0.125 0.244 -5.43 0.000 0.515 -0.48 0.638 
x1*x1 1.05 5.13 0.000 0.238 2.80 0.015 0.502 -1.21 0.255 
x2*x2 1.05 3.45 0.006 0.238 1.02 0.016 0.502 -8.78 0.000 
x3*x3 1.05 -0.11 0.917 0.238 1.15 - 0.502 -040 0.700 
x1*x2 1.41 -1.55 0.153 0.319 -0.16 - 0.673 0.91 0.384 
x1*x3 1.41 1.97 0.078 0.319 -2.60 - 0.673 2.36 0.040 
x2*x3 1.41 -1.24 0.242 0.319 0.68 - 0.673 -0.80 0.443 

Lack-of-fit   0.570   0.807   0.518 
 R2 98.92%  R2 97.33%  R2 95.93%  
 R2(adj) 95.96%  R2(adj) 95.22%  R2(adj) 92.57%  
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All plots (surface and contour) of yields (% CO 

conv., CO2 selec. C5
+ selec.) in comparison to 

temperature, pressure are shown in Figure 5. 

.  
Figure 5: Surface and contour plots of yields vs temperature, pressure (H2/CO=1.35 hold value) 

 

All plots (surface and contour) of yields (%CO 

conv., CO2 selec., C5+ selec.) in comparison to 

H2/CO, pressure are shown in Figure 6. 

 

Figure 6: Surface and contour plots of yields vs H2/CO, pressure (T=538 hold value) 

All plots (surface and contour) of yields (%CO 

conv., CO2 selec., C5+ selec.) in comparison to 

H2/CO, temperature are illustrated in Figure 7. 

 
Figure 7: Surface and contour plots of yields vs H2/CO, temperature (P=1.5 bar hold value) 
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Based on ANOVA in Table 3 the full quadratic 

equations interaction the responses with the 

independent factors, such as: pressure (x1), 

temperature (x2) and feed ratio (H2/CO) (x3) are 

depicted as follows: 

 
 

(6) 

 
 

(7) 

 
 

(8) 

In the optimization part, the target was set to 

maximum CO conversion which was found at P= 

3.21 bar, T=563 K and H2/CO=1.85; also it was 

achieved that the minimum CO2 selectivity could 

be obtained in P=1.93 bar, T=563 K and 

H2/CO=1.85. The maximum of C5+ selectivity was 

achieved at P = 3.67 bar, T = 529.1 K, and H2/CO 

= 0.91. Figure 8 shows the optimization plots of 

all quadratic equations.  

 

Figure 8: All quadratic models optimization 

To evaluate the capability and performance of 

the RSM model, Figure 9 shows the comparative 

error plot for the RSM model with the 

experimental data for two choices responses 

(%CO conversion and CO2 selectivity). It was 

concluded that RSM model has logical 

competence and worthy efficiency to anticipate, 

the experimental data based on literature. 
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Figure 9: Comparing the experimental data based on literature and predicted RSM values for two responses  

Conclusion 

The influences of independent parameters 

(temperature, pressure and feed ratio (H2/CO)) 

on CO conversion and the selectivity of CO2 and 

C5+ were studied in the presence of bi-functional 

Fe/Ni catalyst supported on alumina in a packed-

bed reactor using DOE/RSM. Generally, it was 

observed that, by increase in pressure, CO 

conversion and C5+ selectivity were decreased. 

The selectivity of CO2 increased when pressure 

was decreased. Also, increase in temperature 

caused a rise in CO conversion. 

Results revealed that, the CO2 selectivity grew 

significantly at low temperature and H2/CO ratio, 

when temperature and H2/CO ratio decreased. 

Increase in pressure caused an increase in CO2 

selectivity appreciably. As observed, C5+ 

selectivity fell appreciably when pressure rose. 

At low temperature, C5
+ selectivity was increased, 

but at high temperature, this behavior turned 

upside down. Furthermore, C5
+ selectivity grew 

when H2/CO ratio increased. 

RSM is a proficient technique for demonstration 

of effective input factors and responses. In this 

study, the upper limit of conversion of CO (%) 

was obtained at P = 3.21 bar, T =563 K and 

H2/CO = 1.85; for C5+ selectivity was at P = 3.67 

bar, T = 529.1 K, and H2/CO = 0.91, and the 

minimum selectivity of CO2 was P = 1.93 bar, T = 

563 K and H2/CO = 1.85. It was concluded that 

RSM models were proficient tools for 

demonstrating the behavior of the effective 

parameters on responses where they are 

complex functions of processing parameters. 

 

Nomenclature 

 
quadratic effect of  

 
CO conversion percentage 

 
CO consumption rate 

 

 
function of response 

 
RSM inputs variables 

 
fitting error 

 
number of experiments 

 
interaction between  and  

 input flow rate of CO  

 
Error sum of squares 

 
residual sum of squares 

 
the number of model parameters 

 
the weight of catalyst  
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