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 In the present study, a fast, sensitive, and simple electrochemical sensor 
based on screen-printed graphite electrode (SPGE) modified with Ce-
1,3,5-benzenetricarboxylic acid (Ce-BTC) metal-organic framework 
(MOF) has been prepared for determination of metronidazole (MNZ). 
The electrochemical studies and measurements were done using cyclic 
voltammetry (CV), linear sweep voltammetry (LSV), differential pulse 
voltammetry (DPV), and chronoamperometry techniques. Comparison 
study of electrochemical performance of unmodified SPGE and Ce-BTC 
MOF/SPGE toward the reduction of MNZ was evaluated by using CV. 
The CV studies show that modification of SPGE surface with Ce-BTC 
MOF enhances the reduction peak current but the peak potential of MNZ 
has shifted to the lower potential. Using the effects of Ce-BTC MOF, the 
developed modified SPGE showed good electrochemical sensing 
performance for detecting MNZ in phosphate buffer solution (PBS) (pH 
= 7.0) with wide linear range (0.05-400.0 µM), high sensitivity (-0.0304 
µA/µM), and low limit of detection (LOD) (0.02 µM). Finally, for the MNZ 
analysis in real samples, the Ce-BTC MOF/SPGE sensor exhibited good 
MNZ determination performance with acceptable recoveries of 96.7%-
103.6% and low relative standard deviation (RSD) values of 1.8%-3.5%. 
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Introduction 

Metronidazole (MNZ) is a member of the 

nitroimidazole antibiotic family and its 

frequently employed to treat infections induced 

by protozoa and anaerobic bacteria in humans 

and domestic animals [1]. Despite its effective 

antibacterial properties, the long-term abuse of 

MNZ poses a significant risk in the health of both 

humans and animals owing to its genotoxic, 

carcinogenic, and mutagenic side effects [2]. 

Consequently, it is crucial to find a sensitive, fast, 

and efficient method to detect and measure the 

MNZ level in various compounds and biological 

fluids. So far, several techniques have been used 

for the MNZ determination in pharmaceutical 

compounds, biological fluids, and environmental 

samples [3,4]. The electrochemical methods have 

attracted broad attention to determine multiple 

and various compounds owing to their relatively 

simple and low-cost equipment, easy and simple 

operation, fast response, portability, and minimal 

sample preparation [5-9]. Screen-printing has 

been suggested in the microelectronics field as a 

technology for mass production of reliable, 

inexpensive, reproducible, and disposable 

sensors, serving as an on-site monitoring 

approach. In recent years, electrochemical 

sensors based on SPEs have appeared as one of 

the main fields of electrochemical research for 

sensitive, fast, specific, low cost and portable 

analyses, and have potential innovative 

applications [10,11]. 

The ability for trace amounts of compounds with 

high sensitivity of electrochemical sensors is 

crucial to expand the practical application of 

electrochemical analysis. Therefore, in the 

fabrication and design of electrochemical sensing 

platforms, using and selecting the appropriate 

materials as the modifying agents is the primary 

challenge [12-14]. In contrast to bulk materials, 

nanostructured materials demonstrate enhanced 

performance in various applications due to their 

distinctive structural features [15-27]. 

Particularly, according to the recent studies, the 

use of nanomaterials in fabrication of 

electrochemical sensors has been confirmed to 

further improve their detection performance 

[28-31]. 

MOFs or coordination polymers are a new class 

of nano-porous materials, which are comprised 

of metal ions and organic ligands. The self-

assembly of metal ions with organic ligands in 

the form of a crystal structure has provided a 

suitable opportunity to create diverse and 

abundant compounds with high flexibility in the 

structure, shape, and the size of pores. The wide 

diversity of MOFs has provided a high capability 

of wide applications in different fields including 

drug delivery, catalysis, separation, water 
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purification, and etc. [32]. Especially, recent 

research in this field has shown that 

nanostructured MOFs are among the most widely 

used compounds in the field of sensor technology 

[33,34]. The prominent features of these 

compounds compared to other porous materials 

are high porosity, high surface area, adjustable 

pore size, and uniform structure of the pores. 

Here, the Cu-BTC MOF was synthesized and used 

to fabricate an electrochemical sensor for MNZ 

determination. Compared to the unmodified 

SPGE, at the Cu-BTC MOF/SPGE an enhancement 

in the reduction peak current at reduced 

overpotential for MNZ was observed. The as-

fabricated Cu-BTC MOF/SPGE sensor also 

provided a high sensitivity (-0.0304 µA/µM) 

toward MNZ reduction with a linear range of 

0.05-400.0 µM. Finally, the evaluation of 

modified SPGE performance for detection of MNZ 

in MNZ tablets and urine samples was 

investigated. 

Experimental  

Reagents and Instruments 

All reagents used during the experiments were of 

analytical grade. They were provided from 

Sigma-Aldrich and Merck companies and 

employed without any processing. 

Electrochemical studies and measurements were 

done using SPGE (DropSens (Spain)-DRP-110) 

consisting of working electrode (graphite), 

graphite-based counter electrode, and silver (Ag) 

pseudo-reference electrode. The SPGE was 

connected to an Autolab PGSTAT 302 N 

electrochemical workstation (Methrom, 

Switzerland). Likewise, the Autolab was 

connected to a computer for data storage and 

processing. 

The synthesis and characterization of Ce-BTC 

MOF was reported in our previous work [35]. 

The FE-SEM image of prepared MOF (Ce-BTC 

MOF) is displayed in Figure 1. 

 

Figure 1: The FE-SEM image of Ce-BTC MOF 

SPGE Modification 

To modify the SPGE surface, the prepared Ce-BTC 

MOF was dispersed into deionized water (1 

mg/mL), and ultrasonicated for at least 20 min to 

ensure the full dispersion, and then 3 µL of this 

suspension was drop-casted on the surface of 

SPGE. After that, the prepared SPGE was dried at 

ambient temperature to obtain Ce-BTC 

MOF/SPGE. 

To calculate the surface area of the unmodified 

SPGE and Ce-BTC MOF modified SPGE, the CVs 

were recorded at various scan rates in 0.1 M KCl 

solution containing 1.0 mM K3[Fe(CN)6] (Redox 

probe). Using the Randles-Sevcik equation, the 

value of surface area of Ce-BTC MOF/SPGE was 
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calculated to be 0.116 cm2, which was 3.7 times 

greater than the surface area of unmodified 

SPGE. 

Results and Discussion 

Comparison of Electrochemical Behavior of MNZ 

on Unmodified SPGE and Ce-BTC MOF Modified 

SPGE 

The response of Ce-BTC MOF/SPGE toward MNZ 

(35.0 µM) in 0.1 M PBS (pH = 7.0) in a range of 

pH values from 2.0 to 9.0 was evaluated by using 

DPV. The pH of PBS (supporting electrolyte) 

showed a significant effect on the reduction peak 

of MNZ. According to the resulting 

voltammograms, the maximum intensity of the 

cathodic peak current (Ipc) was detected at pH = 

7.0. Therefore, other electrochemical studies and 

measurements were done in 0.1 M PBS (pH = 

7.0).  

Figure 2 presents the comparison of unmodified 

SPGE (a) and Ce-BTC MOF/SPGE (b) toward MNZ 

determination in 0.1 M PBS (pH = 7.0) by using 

CV. As can be seen, on the unmodified SPGE a 

weak response was observed for the reduction 

reaction of MNZ. Compared with unmodified 

SPGE, the Ce-BTC MOF modified SPGE showed a 

cyclic voltammogram with an increased Ipc (10.5 

µA) and decreased over-potential (-605 mV). 

 

Figure 2: CVs obtained from 300.0 µM MNZ solution in 0.1 M PBS (pH = 7.0) at unmodified SPGE (a) and Ce-BTC 

MOF/SPGE (b) (scan rate of 50 mV/s) 

Evaluation of the Influence of Scan Rate on the 

Electrochemical Reduction of MNZ 

The voltammetric behavior of MNZ was studied 

in a range of scan rates (from 5 to 100 mV/s) at 

Ce-BTC MOF/SPGE by using LSV (Figure 3). For 

each scan rate, a well-defined reduction peak was 

detected and the Ipc continuously improved with 

an increase in scan rate. The observed linear 

relationship between Ipc and the square root of 

the scan rate (υ1/2) demonstrates that the 

reduction process is mainly diffusion controlled 

(Figure 3-Inset) with a linear equation expressed 

as Ipc (µA) = -1.0387υ1/2 + 0.3751 (R2 = 0.9993). 
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Figure 3: LSVs obtained from MNZ solution (200.0 µM) in 0.1 M PBS (pH = 7.0) at scan rates of (a) 5, (b) 10), (c) 

20, (d) 30, (e) 40, (f) 50, (g) 60, (h) 70, (i) 80, (j) 90, and (k) 100 mV/s. Inset: Plot of Ipc vs. υ1/2 

Chronoamperometric Measurements 

The electrochemical reduction of MNZ at Ce-BTC 

MOF/SPGE was also studied by using 

chronoamperometry. For this purpose, the 

chronoamperometric measurements of MNZ 

were performed in 0.1 M PBS (pH = 7.0) 

containing variable concentrations of MNZ by 

applying an appropriate potential step of -650 

mV. The recorded chronoamperograms (plots of 

current intensity (µA) vs. time (s)) for different 

concentrations of MNZ (0.1 mM to 1.5 mM) is 

demonstrated in Figure 4. The resulting 

chronoamperograms show the dependence of 

current intensity on time. From 

chronoamperometric measurements, the 

diffusion coefficient (D) can be calculated using 

the Cottrell,s equation (I = n FAD1/2C/л1/2 t1/2). 

The plot of current intensity (µA) vs. t-1/2 showed 

a good linear dependence between these two 

variables for each concentration (Figure 4A), and 

then by drawing the plot of the resulting slopes 

from Figure 4A vs. MNZ concentrations (Figure 

4B), the value of D (1.5×10-6 cm2/s) was 

calculated. 

Electrochemical Quantification of MNZ Using DPV 

The DPV responses of Ce-BTC MOF/SPGE in 0.1 

M PBS containing variable concentrations of MNZ 

were revealed in Figure 5 in the following 

conditions: step potential 0.01 V and pulse 

amplitude 0.025 V. As can be seen, the peak 

currents of DPV enhances along with increasing 

MNZ concentration, showing the strong response 

of Ce-BTC MOF/SPGE to MNZ. Furthermore, 

Figure 5-Inset displays the corresponding the 

calibration plot related to the obtained 

responses. The MNZ concentration and the 

related Ipc value demonstrated a clear linear 

relationship from 0.05 µM to 400.0 µM. The LOD 

value was calculated 0.02 µM. The performance 

of the Ce-BTC MOF/SPGE sensor with some of 

reported works in the literature for MNZ 

determination is presented in Table 1. 
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Figure 4: Chronoamperometric response of Ce-BTC MOF/SPGE in 0.1 M PBS (pH = 7.0) for a (0.1), b (0.5), c 

(1.0), and d (1.5) mM of MNZ. Inset A (Plots of Ipc vs. t-1/2 for recorded chronoamperograms) and Inset B (Plot of 

the slope of the obtained lines vs. MNZ concentration)  

Figure 5: DPV responses of Cu-BTC MOF/SPGE in 0.1 M PBS containing MNZ a (0.05), b (1.0), c (5.0), d (10.0), e 

(20.0), f (40.0), g (60.0), h (80.0), i (100.0), j (200.0), k (300.0), and l (400.0) µM. Inset: The plot of Ipc against the 

MNZ concentration 
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Table 1: Comparison of the Ce-BTC MOF/SPGE sensor with previously reported MNZ sensors 

Electrochemical Sensor Electrochemical Method Linear Range LOD Ref. 

Graphene-bismuth/glassy carbon 

electrode (GCE) 
CV 0.005 - 260 µM 0.9 nM [1] 

β-cyclodextrin-functionalized gold 

nanoparticles/poly(L-cysteine)/GCE 

Linear sweep stripping 

voltammetry (LSSV) 
0.1 - 600 µM 14 nM [2] 

Ag/Au Modified Nafion Coated GCE DPV 
1.00×10-4 - 

1.00×10-3 M 
5.87×10-8 M [3] 

Flower-like cobalt anchored on reduced 

graphene oxide (f-Co@rGO) 

nanocomposite/GCE 

DPV 0.025 - 500 nM 0.015 nM [4] 

Ce-BTC MOF/SPGE DPV 0.05 - 400.0 µM 0.02 µM 
This 

work 

 

MNZ Detection in Urine and Tablet Samples 

To investigate the applicability of Ce-BTC 

MOF/SPGE as electrochemical sensor for 

determination of MNZ in urine and MNZ tablet 

samples, the analytical tests using the standard 

addition method by DPV were done in 0.1 M PBS 

containing prepared real samples. The results of 

DPV measurements for MNZ determination were 

presented in Table 2. 

The obtained suitable values of recovery (96.7%-

103.6%) and acceptable values of RSD (1.8%-

3.5%) confirm the accuracy, precision, and as 

well as applicability of the prepared sensor for 

determination of MNZ contents in real samples. 

 

Table 2: The results obtained for determination of MNZ contents in prepared urine and MNZ tablets using DPV 

measurements on the Ce-BTC MOF/SPGE (n = 5) 

Sample Spiked 

concentration 

(µM) 

Found 

concentration 

(µM) 

Recovery (%) R.S.D. )%( 

MNZ tablet 

0 5.3 - 3.4 

1.0 6.2 98.4 2.3 

2.0 7.5 102.7 2.9 

3.0 8.6 103.6 1.8 

4.0 9.2 98.9 2.2 

Urine 

0 - - - 

4.0 4.1 102.5 1.9 

6.0 5.8 96.7 3.5 

8.0 8.1 101.2 2.1 

10.0 9.9 99.0 2.7 

 

Conclusion 

To sum up, an electrochemical sensor based on 

Ce-BTC MOF modified SPGE was used to detect 

MNZ. The electrochemical studies by using CV 

showed that the Ce-BTC MOF modified SPGE 

effectively improved the electrochemical 

reduction of MNZ compared to unmodified SPGE. 

After optimizing the parameters, the modified 

SPGE sensor was applied to determine MNZ by 

using DPV. Concerning optimum conditions, the 

Ce-BTC MOF modified SPGE showed a linear 

response to MNZ between 0.05 µM and 400.0 µM 

with LOD of 0.02 µM using DPV. Finally, the 

standard addition method was demonstrated 

good ability of Ce-BTC MOF/SPGE to determine of 

MNZ in real samples. 
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