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 Cancer, is a worldwide epidemic, is characterized by the abnormal 
growth of cells and their ability to spread to various organs and tissues 
within the body. Doxorubicin (DOX) is an effective chemotherapy drug 
that not only inhibits the growth of cancer cells, but also assists in the 
immune-mediated elimination of tumor cells. Hence, it is critical to 
carefully regulate the DOX dosage for cancer patients undergoing drug-
based cancer treatment. Nowadays, electrochemical sensors have 
emerged as reliable analytical instruments for detecting a broad 
spectrum of target molecules. This is because of their simplicity, 
affordability, and ability to seamlessly integrate with multiplexed and 
point-of-care strategies. By modifying the surface of electrodes with 
diverse materials, it is possible to enhance the sensitivity and lower the 
detection limits (LOD) of electrochemical sensors. This report provides 
a concise summary of selected studies that focus on the use of 
electrochemical sensors based on carbon nanomaterials and polymers 
for the DOX analysis, and offers insights on the technical advancements 
and potential future applications in this particular domain. 
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Introduction 

The continuous advancements in science, 

technology, and industry have greatly enriched 

human life. However, as human society 

progresses and lifespans increase, the prevalence 

of health issues and diseases poses a significant 

challenge in modern society [1-3]. Cancer is a 

prominent disease recognized as the primary 

cause of global mortality. Different treatment 

modalities are employed for cancer, and 

researchers have identified the emergence of a 

new generation of cancer medications that have 

undergone advanced clinical trials and 

demonstrated promising results [4-12]. 

Doxorubicin, also referred to as 

hydroxydaunorubicin, is widely recognized as a 

crucial anti-cancer medication globally [13]. It is 

classified as a cytotoxic anthracycline drug and is 

utilized in the treatment of various neoplastic 

diseases, including acute leukemia, Hodgkin’s 

and non-Hodgkin’s lymphomas, lung cancer, 

breast cancer, and sarcomas [14]. DOX functions 

by interacting with the double helix structure of 

DNA within cancer cells, specifically targeting the 

anthracycline moiety. Accordingly, it inhibits the 

transcription and replication processes of DNA. 

Unfortunately, the clinical use of DOX is 

restricted because of the potential development 

of cumulative dose-dependent chronic 

cardiomyopathy. This condition, if left untreated, 

may progress to congestive heart failure, 

resulting in a mortality rate ranging from 20% to 

40% [15,16]. The DOX administration in the 

human body can lead to various side effects, 

including systemic toxicity, cardiotoxicity, pain, 

nausea, and the development of drug resistance 

during the course of therapy. Therefore, the DOX 

determination in clinical and biological 

specimens is very serious due to its significant 

cardiotoxicity effects [17,18]. 

To date, several analytical methods such as 

electrophoresis [19, 20], spectrometry [21], and 

chromatography [22,23] have been presented for 

the DOX detection. These strategies are very 

accurate, but are quite expensive to carry out, 

time-consuming, laborious, and expensive. 

Electrochemical methods are attractive, low cost, 

fast, portable, no complex pre-treatment, and 

non-polluting analyses with good kit ability that 

make them highly attractive compared to the 

other analytical techniques [24-29]. 

Electrochemical sensors have become 

considerable in various fields, including 
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biotechnology and medicine, industrial 

applications, and environmental monitoring [30-

33]. There are 5 types of electro-chemical 

sensors, i.e. potentiometric, conductive, 

impedimetric, voltammetric, and amperometric. 

Among these diverse techniques, amperometric 

and voltammetric strategies are highly 

admissible for electro-chemical sensing [34,35]. 

Electrochemical sensors belong to a class of 

chemical sensors that utilize an electrode as a 

transducer to generate an electrochemical signal 

in response to analytes. Commonly utilized 

electrodes for electrochemical sensors include 

glassy carbon, carbon pastes, diamond, gold, 

graphite, and screen-printed electrodes [36,37]. 

However, bare electrodes are prone to the 

adsorption of target analytes and their reducible 

species during redox reactions. This can lead to 

contamination of the electrode surface, adversely 

affecting the analytical reaction performance 

namely sensitivity, selectivity, and feasibility of 

redox reactions [38,39].  

Modifying the electrodes is considered the most 

promising approach to enhance various aspects 

of electrochemical sensing devices, including 

selectivity, sensitivity, adhesion of analytes, 

dynamic ranges, and detection limits [40,41]. To 

enhance sensor performance, various materials 

are used, including polymer structures, biological 

elements, as well as conductive and semi-

conductive materials [42-45]. 

Most recently, nanomaterials have been the 

primary focus of modern research, with a 

particular emphasis on their potential for 

modification of electrodes surface [46,47]. 

Advancements in nanotechnology have enabled 

the customization of functional nanomaterials 

through synthetic design, allowing for precise 

control over their size, composition, and surface 

properties [48-51]. Nanomaterials possessing 

remarkable electro-catalytic properties, superior 

conductivity, and increased surface area have 

emerged as crucial materials for electrode 

modification [52-57]. Carbon nanotubes, metal 

oxide, and metal nano-structures, and graphene 

oxide are prominent nano-scale materials that 

have been extensively utilized for electrode 

modification. They have significantly enhanced 

the determine process and addressed diverse 

challenges faced by researchers, such as signal 

fluctuation and over-potential [58-63]. 

The principal purpose of this investigation is to 

develop electro-chemical sensors based on 

carbon-based nanomaterials and polymer 

structures. 

Electrochemical Sensors Based on 

Nanomaterials for Doxorubicin 

Determination  

Carbon Nanotubes-Based Electrochemical Sensors 

for Doxorubicin Determination 

Carbon nanotubes (CNTs) were first discovered 

in 1991 by Sumio Iijima. He discovered CNTs 

while examining the material that had been 

deposited on the cathode during the arc-

evaporation synthesis of fullerenes [64,65]. 

Naturally, the CNTs can be categorized into two 

groups: single-walled carbon nanotubes 

(SWNTs) and multi-walled carbon nanotubes 

(MWNTs). SWCNTs exhibit a cylindrical 

nanostructure, characterized by a high aspect 

ratio [66, 67].  

CNTs are widely recognized as one of the 

fundamental building blocks of nanotechnology 

due to their exceptional properties and versatile 

applications. With a tensile strength 

approximately 100 times stronger than steel, 

thermal conductivity better than most materials 

including diamond, and electrical conductivity 

comparable to copper but with the capacity to 

carry higher currents, CNTs are considered an 

exceptionally captivating material [68-71]. The 

exceptional properties of CNTs make them 

incredibly appealing for chemical sensors overall, 

and electrochemical detection in particular 

[72,73]. An accurate comparison between the 

carbon nanotubes-based electrochemical sensors 

of DOX in terms of analytical figures is presented 

in Table 1. 

Taei et al. fabricated Fe2O3/SnO2 nanocomposite 

via a simple solid state technique in alkaline 

medium. Then, they constructed the DNA 

biosensor for the DOX determination. For this 
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purpose, a combination of MWNTs, Fe2O3/SnO2, 

and chitosan (CHIT) was immobilized onto a 

pencil graphite electrode (PGE) surface to 

enhance the immobilization of double-stranded 

DNA (ds-DNA) on the electrode surface (ds-DNA- 

Fe2O3/SnO2-MWNTs-CHIT-PGE). By utilizing the 

ds-DNA-Fe2O3/SnO2-MWNTs-CHIT-PGE 

configuration, the researchers could detect the 

interaction between DOX and ds-DNA. This 

allowed them to use a DNA-sensor for the 

susceptible determination of DOX. On the bare 

PGE surface at pH 7.0, DOX exhibits an oxidation 

peak at +0.34 V. The DNA presence leads to a 

decrease in the current, and there is also a 

positive shift observed in the DOX oxidation 

peak, which implies an intercalative interaction 

between DOX and DNA. Finally, the ds-DNA 

Fe2O3/SnO2-MWNTs-CHIT-PGE sensor exhibits 

excellent characteristics namely a large detection 

range (20.0 to 5552.0 nM), good sensitivity, low 

limit of detection (LOD) (0.004 nM), high 

stability, rapid response, and good selectivity 

[74]. 

In another paper, Taei et al. created a sensor 

based on an MWCNT/CoFe2O4 nanocomposite-

modified carbon paste electrode 

(MWCNT/CoFe2O4/CPE) and employed it to 

accurately detect small quantities of DOX using 

differential pulse voltammetry (DPV). Under 

optimized experimental conditions, the 

MWCNT/CoFe2O4/CPE displayed a DPV response 

at a working voltage of 460 mV which was 

proportional to the DOX response in the 0.05 to 

1150.0 nM range. The LOD was determined to be 

10.0 PM. The MWCNT/CoFe2O4/CPE sensor for 

DOX analysis provides a reliable and efficient 

method for accurately determining its 

concentration. This electrode has demonstrated 

excellent performance and can be applied to the 

DOX determination in biological specimens [75]. 

Madrakian et al. used a Fe3O4@Pt nanoparticle 

and MWCNT modified CPE 

(Fe3O4@Pt/MWCNT/CPE) as a rapid platform for 

the voltammetric detection of DOX. The 

incorporation of MWCNTs and Fe3O4@Pt 

nanoparticles enhanced the electro-catalytic 

performance of the developed electrode for 

determining DOX. The calibration curve was 

generated using DPV under optimized 

experimental conditions. It exhibited a linear 

response range of 0.05 to 70.0 mM for the DOX 

determination, with a suitable LOD of 1.0 nM. In 

addition, this method was applied for the 

voltammetric detection of DOX in urine 

specimens at low concentrations, yielding 

satisfactory recovery rates [76]. 

Haghshenas et al. reported an efficient procedure 

for creating an electrochemical sensor based on 

an oxidized MWCNT/glassy carbon electrode 

(OMWCNT/GCE). The OMWCNT/GCE platform 

was fabricated using an electrochemical 

oxidation strategy in a basic medium (0.5 M 

NaOH solution). It was then utilized as a 

voltammetric sensor for the simultaneous 

detection of DOX and dopamine (DA). The sensor 

displayed remarkable catalytic performance for 

the oxidation of both DOX and DA. Furthermore, 

it successfully separated the initially overlapped 

signals of DOX and DA oxidation on the un-

modified electrode, resulting in two distinct and 

well-defined peaks. Square wave voltammetry 

(SWV) was engaged to simultaneously detect 

DOX and DA in a binary mixture. Under 

optimized conditions, the SWV analysis 

demonstrated linear concentration dependencies 

of the anodic current responses for DOX and DA. 

The concentration range observed was 0.03 to 

55.0 μM for DA and 0.04 to 90.0 μM for DOX. The 

LODs for DA and DOX were determined to be 

8.5× 10-3 μM and 9.4× 10-3 μM, respectively. The 

practical applicability of the OMWCNT/GCE was 

further demonstrated via successfully detecting 

DOX and DA simultaneously in urine and blood 

serum specimens [77]. 

Hajian et al. developed an electrochemical 

platform utilizing a platinum electrode modified 

with MWCNTs (Pt/MWCNTs) for the DOX 

determination, a chemotherapy drug, in plasma 

samples. DOX was successfully adsorbed on the 

Pt/MWCNTs surface, resulting in the appearance 

of a pair of redox peaks at approximately 0.522 V 

and 0.647 V in 0.1 M Britton Robinson buffer (B-

R) at a pH of 4.0. The electrochemical 

parameters, containing pH, accumulation time, 
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buffer type, and amount of modifier were 

optimized in this study. Under the ideal 

conditions, a linear calibration curve was 

observed within the 0.05 to 4.0 μg/mL range. The 

LOD for DOX was achieved to be 0.002 μg/mL 

[78].  

Kalambate et al. introduced a voltammetric 

platform for the simultaneous detection of the 

DOX and dasatinib (DAS) (as anticancer drugs). 

This sensor utilized a GCE modified with 

mesoporous Pd@Pt core-shell supported on 

MWCNT (Pd@Pt/MWCNT/GCE). The 

electrochemical behavior of the DAS and DOX 

was investigated using cyclic voltammetry (CV), 

while simultaneous detection was performed via 

adsorptive stripping square wave voltammetry 

(AdSSWV). The developed sensor exhibited 

exceptional electrochemical response to DAS and 

DOX within the linear concentration ranges of 

38.0-9880.0 nM and 4.4-8580.0 nM, respectively. 

The LOD for DOX was computed to be 0.86 nM, 

while for DAS it was determined to be 6.72 nM. 

Moreover, the developed sensor was engaged for 

the accurate and precise detection of DAS and 

DOX in urine and blood serum specimens. This 

demonstrates the reliability and practicality of 

the platform for real-world applications in 

biomedical analysis [79].  

Sharifi and Fayazfar investigated a GCE modified 

with MWCNTs decorated with Au nanoparticles 

(MWCNTs/AuNPs/GCE) as an ultrasensitive 

sensing platform for the detection of DOX. 

Figure 1 illustrates the fabrication strategy of the 

MWCNTs/AuNPs/GCE. The strategic 

combination of MWCNTs and Au NPs resulted in 

a synergistic effect that enhanced the rate of 

electron transfer. This synergistic effect enabled 

the development of an active platform for 

sensitive detection of DOX. Also, a broad 

concentrations range of DOX from 1×10-11 to 

1×10-6 M was achieved using linear sweep 

voltammetry (LSV) at the modified electrode. In 

addition, a very low LOD of 6.5 pM was obtained, 

demonstrating the excellent sensitivity of the 

method. The fabricated sensor exhibited 

enhanced electro-catalytic activity, repeatability, 

and high stability. It also demonstrated 

satisfactory selectivity for detecting DOX [80]. 

 

Figure 1: Schematic representation of the MWCNTs/AuNPs/GCE sensor [80]  
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Zhao et al. introduced a novel electrochemical 

platform for the DOX detection. The sensor 

utilized a covalent organic framework decorated 

with AuNPs and MWCNTs (AuNPs@COFs-

MWCNTs) as the modifier material. The 

AuNPs@COFs-MWCNTs nanocomposite was 

utilized to modify the GCE surface 

(AuNPs@COFs-MWCNTs/GCE) through a simple 

physical deposition method. This modification 

process resulted in a significantly amplified 

response signal for DOX detection. 

The porous nature and high surface area of COFs 

enabled better distribution of electro-active sites 

and enhanced affinity towards DOX in the 

AuNPs@COFs nanocomposite. This, in turn, 

enhanced the electrocatalytic activity of the 

nanocomposite towards DOX detection. 

Furthermore, highly conductive MWCNTs were 

incorporated into the AuNPs@COFs 

nanocomposite to ensure optimal conductivity. 

As a result, the AuNPs@COFsMWCNTs 

nanocomposite led to improved catalytic activity 

which extremely amplified the response signal 

for DOX detection. Consequently, the developed 

electrode demonstrated an extended linear range 

for DOX detection, spanning from 0.08 μM to 25.0 

μM. Moreover, it achieved a low LOD of 16.0 nM, 

indicating the high sensitivity of the sensor for 

DOX detection. It effectively detected DOX in 

spiked cell lysate and human serum samples, 

indicating its practical application for monitoring 

DOX drug levels in a clinical setting [81]. 

Table 1: Comparison of analytical figure for electrochemical detection of DOX using carbon nanotubes-based 

electrochemical sensors 

Electrochemical Sensor Electrochem

ical Method 

Limit of 

Detection 
Linear Range Ref. 

ds-DNA- Fe2O3/SnO2-MWCNTs-CHIT-PGE DPV 0.004 nM 20.0 to 5552.0 nM [74] 

MWCNT/CoFe2O4/CPE DPV 10.0 pM 0.05 to 1150.0 nM [75] 

Fe3O4@Pt/MWCNT/CPE DPV 1.0 nM 0.05 to 70.0 mM [76] 

OMWCNT/GCE SWV 9.4 nM 0.04 to 90.0 μM [77] 

Pt/MWCNTs CV 0.002 μg/mL 0.05 to 4.0 μg/mL [78] 

Pd@Pt/MWCNT/GCE AdSSWV 0.86 nM 4.4–8580.0 nM [79] 

MWCNTs/AuNPs/GCE LSV 6.5 pM 0.01 to 1000.0 nM [80] 

AuNPs@COFs-MWCNTs/GCE DPV 16.0 nM 0.08 to 25.0 μM [81] 

 

Graphene-Based Electrochemical Sensors for 

Doxorubicin Determination 

Graphene, a two-dimensional (2D) lattice 

comprised of single-atom-thick nano-structured 

sheets arranged in a honeycomb pattern, is a 

prominent member of the carbon nanoscale 

materials family [82,83]. In 2004, Geim and 

Novoselov conducted an experimental study on 

the exfoliation, electronic properties, and 

characterization of this 2D carbon via repeatedly 

cleaving graphite using adhesive tape [84]. Due 

to its intrinsic and unique mechanical and 

electronic properties, graphene is further utilized 

as a material in a broad spectrum of applications 

[85-90]. The significant advantages of graphene-

based materials such as mass production, high 

surface area, superior conductivity, low cost, 

chemical and thermal stabilities properties, and 

wide potential window have promoted their 

further applications for electrochemical catalysis 

and sensing [91,92]. An accurate comparison 

between the graphene-based electrochemical 

sensors of DOX in terms of analytical figures is 

summarized in Table 2. 

Guo et al. suggested an ultra-sensitive sensor for 

the determine DOX and methotrexate using a 

GCE modified with the cyclodextrin-graphene 

nanosheets (CD-GNs/GCE). The electrochemical 

response of DOX and methotrexate at the 

proposed electrode demonstrated significantly 

improved electrochemical responses compared 

to that at the un-modified GCE. The hybrid 

nanomaterial greatly enhanced the 

electrochemical response of both drugs by 

harnessing the respective advantages of 
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cyclodextrin and graphene in the sensor design. 

The electrochemical sensor demonstrated linear 

response ranges of 10.0 nM-0.2 mM for DOX and 

0.1-1.0 mM for methotrexate. The LODs for DOX 

and methotrexate were determined to be 0.1 nM 

and 20.0 nM, respectively. The properties 

exhibited by the fabricated sensor make it a good 

platform for the accurate determination of DOX 

and methotrexate in various domains such as 

clinical, biology, and pharmaceutical fields [93]. 

Chekin et al. discussed the design and 

development of a disposable electrochemical 

sensor that can be used for directly monitoring 

DOX levels in clinical blood specimens. The 

researchers utilized a gold electrode coated with 

the nitrogen-doped reduced graphene oxide (N-

rGO) and chitosan, resulting in a sensor denoted 

as Au/N-rGO-CS. By optimizing the experimental 

conditions, the researchers established a linear 

correlation between the anodic current and the 

DOX level within the range of 0.010-15.0 μM. The 

sensor demonstrated an LOD of 10.0 nM, 

indicating its sensitivity to low concentrations of 

DOX. The offered sensor was engaged for the 

DOX determination in serum specimens obtained 

from patients undergoing anti-cancer treatment 

[94]. 

Lee et al. demonstrated the production of high-

quality graphene nano-sheets through liquid-

phase shear exfoliation in organic solvents, 

specifically 1-methyl-2-pyrrolidinone (NMP), at 

ambient conditions, and then urea was 

introduced as a stabilizer for this process. They 

obtained the low-defect graphene (LDG) utilizing 

this method, which is rather straightforward and 

accessible, thereby rendering it an efficient way 

for large-scale production of graphene. In 

addition, the researchers used the LDG to modify 

a GCE (LDG-GCE) to develop an electrochemical 

sensor for DOX. The proposed sensor exhibited 

improved electro-catalytic activity towards DOX, 

resulting in a high sensitivity of 7.23 × 10-1 

μM/μA. It also achieved a low LOD of 39.3 nM 

[95]. 

Yan et al. presented a simple and efficient 

approach for integrating a vertically-ordered 

mesoporous silica-nanochannel film (VMSF) with 

electrochemically reduced graphene oxide 

(ErGO). This integration was achieved using an 

electrochemically assisted self-assembly 

approach. Electrochemical reduction of GO and 

growth of the VMSF both take place 

simultaneously in a straightforward one-step 

process, forming a VMSF/ErGO layer on the GCE 

(VMSF/ErGO/GCE). Due to the presence of 

oxygen groups, 2D planar structure, and the 

hydrophobic structure (π-conjugated) of ErGO, 

the VMSF was able to grow on the GCE surface 

stably. This layer further served as a protective 

barrier, preventing the internal ErGO electro-

active layer from detaching from the surface of 

electrode after prolonged usage. Compared to an 

un-modified GCE, the VMSF/ErGO/GCE 

demonstrated superior characteristics in 

detecting DOX. It displayed a linear range of 1.0 

nM to 20.0 mM, a good sensitivity of 7.815 mA 

mM-1, and a good LOD of 0.77 nM. These 

exceptional results were achieved through the 

combined signal amplification effects of the 

electro-catalytic activity and π–π interaction 

provided by ErGO, as well as the electrostatic 

preconcentration effect offered by the VMSF [96].  

Shi et al. successfully synthesized 3D nanoflower-

like ZnO-graphene oxidation nanocomposites 

(3D ZnO-GO) using a straightforward aqueous 

hydrothermal approach and a sonochemical 

method. Afterwards, the researchers proceeded 

to decorate Au@AuPt nanoparticles onto the 3D 

ZnO-GO, resulting in the creation of novel 

Au@AuPt/3D ZnO-GO nanohybrids. These 

nanohybrids were then utilized to construct an 

electrochemical sensor for the determination of 

DOX (Au@AuPt/3D ZnO-GO/GCE). Compared to 

un-modified electrode, the Au@AuPt/3D ZnO-

GO/GCE demonstrated a notable improvement in 

the current response. The created sensor 

indicated a broad linear concentration range of 

detection, spanning from concentrations as low 

as 0.65 μM up to 369.45 μM, with a low LOD of 

0.013 μM. In addition, the developed electrode 

was utilized for the DOX determination in real 

specimens (urine) [97]. 

Rezvani Jalal et al. developed a voltammetric 

sensor by utilizing the in situ growth of NiCo-BTC 
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bimetallic Metal-Organic Frameworks (MOFs). 

These MOFs were grown on a GCE, which had 

been previously modified with conductive 

nitrogen-doped GO nanoribbons (NiCoBTC 

MOFs/N-GONRs/GCE). The SWV response of the 

NiCo-BTC MOFs/N-GONRs/GCE toward DOX 

showed a significantly higher signal compared to 

NiCoBTC MOFs/GCE. This improvement can be 

attributed to the synergistic effect from NiCo-

BTC MOFs and N-GONRs. Under optimal 

conditions, the developed electrode exhibited a 

powerful current response to the DOX oxidation. 

The calibration curve generated for DOX using 

the proposed sensor exhibited two linear ranges: 

0.01-1.0 μM and 1.0-80.0 μM. The LOD was 

determined to be 0.006 μM (or 6.0 nM). This 

detection limit is lower than the DOX 

concentration typically found in human plasma 

specimens, which is approximately 77.2 ± 10.5 

nM. The results obtained indicate that the 

developed sensor holds great promise for 

accurately determining DOX concentrations in 

serum and human urine specimens [98]. 

 

Table 2: Comparison of analytical figure for electrochemical detection of DOX using graphene-based 

electrochemical sensors 

Electrochemical Sensor 
Electrochem

ical Method 
Limit of 

Detection 
Linear Range Ref. 

CD-GNs/GCE DPV 0.1 nM 10.0 Nm to 0.2 mM [93] 

Au/N-prGO-CS DPV 10.0 nM 0.010 to 15.0 μM [94] 

LDG‐GCE DPV 39.3 nM 0.3 to 3.0 μM [95] 

VMSF/ErGO/GCE DPV 0.77 nM 1.0 nM to 20.0 mM [96] 

Au@AuPt/3D ZnO-GO/GCE DPV 0.013 μM 0.65 to 369.45 μM [97] 

NiCoBTC MOFs/N-GONRs/GCE SWV 0.006 μM 0.01 to 80.0 μM [98] 

 

Other Carbon Nanomaterials-Based 

Electrochemical Sensors for Doxorubicin 

Determination   

An accurate comparison between the other 

carbon nanomaterials-based electrochemical 

sensors of DOX in terms of analytical figures is 

listed in Table 3. 

Hasanzadeh et al. prepared a GCE modified with 

graphene quantum dots (GQDs) using casting 

GQDs suspension onto its surface (GQD-GCE). 

This electrode was then employed for the 

detection of DOX in plasma specimens. It was 

discovered that GQD had been stably absorbed 

on the GCE using a straightforward procedure. 

The results obtained from CV experiments 

revealed a significant enhancement in electro-

activity for the DOX oxidation in phosphate 

buffer solutions (PBS) when using the GQD-

modified GCE. The linear range of concentration 

for the detection of DOX using the GQD-modified 

GCE was found to be 0.018-3.60 μM. The LOD 

achieved under these optimized conditions was 

determined to be 0.016 μM [99].  

 

Table 3: Comparison of analytical figure for electrochemical detection of DOX using other carbon nanomaterials 

-based electrochemical sensors 

Electrochemical Sensor 
Electrochemical 

Method Limit of Detection Linear Range Ref. 

GQD-GCE DPV 0.016 μM 0.018 to 3.60 μM [99] 

CuNPs-CB-Nafion/GCE SWV 0.024 μM 0.45 to 5.1 μM [100] 

GCE/N-CNOs DPV 60.0 pM 0.2 nM to 10.0 µM [101] 

FeV/SCNFs/GCE Amperometric 5.2 nM 0.02 to 542.5 µM [102] 

CDs/CeO2/SPCE CV 0.09 μM 0.2 to 20.0 μM [103] 
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Materon et al. proposed a voltammetric platform 

for the simultaneous detection of DOX and 

methotrexate by Cu nanoparticles (CuNPs), 

Nafion, and carbon black (CB), modified GCE 

(CuNPs-CB-Nafion/GCE). The combination of CB 

and CuNPs in the CuNPs-CB-Nafion/GCE sensor 

resulted in outstanding catalytic performance for 

the detection of both DOX and methotrexate. The 

proposed sensor demonstrated excellent 

catalytic activity for electrochemical oxidation, as 

evidenced by the SWV results. The redox 

potentials observed for DOX and methotrexate 

were 0.69 V and 0.93 V, respectively, indicating 

efficient oxidation of both analytes. Upon 

optimization, the CuNPs-CB-Nafion/GCE sensor 

demonstrated a linear range of 4.5 × 10-7 to 5.1 × 

10-6 M for DOX, with a LOD of 2.4 × 10-8 M. 

Similarly, for methotrexate, the linear 

concentration range achieved was 2.2 × 10-6 to 

2.5 × 10-5 M, with a LOD of 9.0 × 10-8 M. The 

created sensor proved to be effective in the 

determination of DOX and methotrexate in 

biological matrices, such as urine specimens, as 

well as environmental samples, like water river 

samples. The sensor exhibited a spike recovery 

rate of nearly 100%, indicating its accuracy and 

reliability in these real sample matrices [100]. 

Ghanbari and Norouzi developed a sensor for the 

DOX determination using a GCE that was 

modified with nitrogen-doped carbon 

nanoonions (GCE/N-CNOs). They prepared the 

N-CNOs from the fullerene via a straightforward 

procedure utilizing aminated nanodiamonds 

(AM-NDs). During the preparation process, 

nitrogen atoms were introduced into the CNO 

cages via annealing the AM-NDs under an inert 

atmosphere and reduced pressure. This allowed 

for the incorporation of nitrogen into the 

nanostructures. The results of the study revealed 

that the N-CNOs possessed intriguing 

physicochemical properties. These N-CNOs 

exhibited a high active surface area, measuring 

1.41 cm2, as well as excellent electro-catalytic 

activity. These properties made the N-CNOs an 

ideal choice for sensor construction, as they 

provided an active site for the DOX 

determination. The GCE/N-CNOs displayed a 

linear response for the DOX detection in a 

concentration range of 0.2 nM to 10.0 µM. The 

sensor achieved a low LOD of 60.0 pM, and a 

calculated sensitivity of 1.13 µA µM-1 cm-2. To 

assess the practicality of the DOX sensor, a blood 

serum sample was applied for testing [101]. 

Rajaj et al. developed a composite material 

consisting of iron vanadate nanoparticles 

assembled with sulfur-doped carbon nanofibers 

(FeV/SCNF). The FeV/SCNFs electrocatalyst was 

then modified onto a GCE to create 

FeV/SCNFs/GCE, which was employed for the 

DOX detection. The FeV/SCNFs/GCE 

demonstrated the excellent sensitivity (46.041 

μA μM-1 cm-2) within a broad concentration range 

of 20.0 nM to 542.5 μM. Likewise, the sensor 

indicated superior selectivity even in the 

presence of common interferents, making it 

suitable for accurate and reliable DOX detection. 

Moreover, the FeV/SCNFs/GCE was engaged to 

determine DOX in diverse real specimens. 

Specifically, the determination of DOX in human 

urine and blood serum was performed, and the 

accepted results demonstrated a recovery range 

of 98.38% to 99.92%. This indicates the 

reliability and accuracy of the FeV/SCNFs-based 

sensor in real specimens’ analysis [102]. 

Thakur et al. introduced a novel modification to a 

screen-printed carbon electrode (SPCE) by 

incorporating carbon dots/ CeO2 nanocomposites 

(CDs/CeO2). The resulting modified electrode, 

termed CDs/CeO2/SPCE, was designed for the 

sensitive determination of DOX. Therefore, they 

initially synthesized CeO2NPs from urea and 

(NH4)2[Ce(NO3)6] using easy refluxing, and then 

CDs were fabricated utilizing taurine using the 

thermal decomposition technique. After that, 

CDs/CeO2 were prepared with various wt% of 

CDs (from 0.5 to 5 wt%) through a hydrothermal 

approach. The CDs/CeO2 displayed more 

efficiency for DOX sensing compared to bare CDs 

and CeO2NPs via facilitating electron transfer 

response at the surface of SPCE with increasing 

amounts of CDs. The fabrication process of the 

nanocomposites and modified electrode for 

detection of DOX is depicted in Figure 2. The 

5wt% CDs-5.0/CeO2 nanocomposite exhibited 
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the most elevated oxidation reaction towards 20 

μM of DOX (pH=5.0). The CV revealed that the 

CDs-5.0/CeO2/SPCE showed a linear response 

range of 0.2-20.0 μM, and a low LOD of 0.09 μM 

for DOX oxidation [103]. 

 

Figure 2: A schematic diagram for the synthesis of CeO2NPs, CDs, and CDs/CeO2 nanocomposites, and 

electrochemical detection of DOX [103]  

Polymers-Based Electrochemical Sensors for 

Doxorubicin Determination 

Nowadays, a broad spectrum of compounds 

being designed is polymers. Concerning the 

diversity of their physical and chemical 
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properties, they can adapt to many applications 

[104-114]. Most recently, enormous attraction 

has been established in polymeric materials that 

could irreversibly or reversibly change their 

chemical and physical properties under the 

influence of foreign stimuli, including 

temperature, pH, light radiation, presence of 

specific ions, magnetic fields, mechanical forces, 

bioactive molecules, and electric fields [115-

124].  

The study of polymer films on the electrodes 

surface is currently one of the most dynamic 

areas of research in the field of modern 

electrochemistry. The modification of polymeric 

species through adsorption or coating onto 

electrode surfaces offers significant flexibility. 

Polymers with various functional groups can 

achieve substantial surface coverage through 

thick multilayer coatings [125]. This 

characteristic facilitates the attachment of 

certain compounds to the polymer matrix-coated 

electrodes, allowing them to mediate the 

oxidation of electro-active species. Among the 

various techniques for creating polymeric-

modified electrode, electro-polymerization has 

emerged as an efficient and versatile method due 

to its benefits such as strong adherence to the 

electrode surface and good chemical stability of 

the film analysis, superior selectivity, sensitivity 

and reduced costs, and homogeneity in 

electrochemical deposition [126-128]. An 

accurate comparison between the polymers-

based electrochemical sensors of DOX in terms of 

analytical figures is presented in Table 4. 

 

Table 4: Comparison of analytical figure for electrochemical detection of DOX using polymers -based 

electrochemical sensors 

Electrochemical Sensor 
Electrochemical 

Method 
Limit of Detection Linear Range Ref. 

PGA-GCE SWV 0.45 µM 2.20 to 44.5 µM [129] 

GCE/Poly(Neutral red)/ 

thiacax[4] arene/DNA 

DPV 0.05 nM 0.1 to 100.0 nM [130] 

Impedimetric 0.1 nM 0.01 to 100.0 µM 

PARG-GCE DPV 69.0 nM (whole blood) 

103.0 nM (plasma) 

0.069 to 1.08 µM 

(whole blood) 

0.1 to 3.45 μM 

(plasma) 

[131] 

PANI/DNA/PANI/GCE Impedimetric 0.6 pM 1.0 pM to 0.1 µM [132] 

GCE/Poly(Azure B–

proflavine)/DNA 

Impedimetric 0.01 nM 0.03 to 10.0 nM [133] 

GCE/poly-proflavine /DNA Impedimetric 0.3 nM 1.0 nM to 0.1 μM [134] 

GCE/poly-Azure B Impedimetric 0.07 nM 0.1 µM to 0.1 nM [135] 

PEGylated-CoFe2O4/GCE DPV - 30 ng/mL to 5.0 

μg/mL 

[136] 

 

Santos et al. used the Poly-L-glutamic acid (PGA), 

a biodegradable polymer, as conjugated to DOX 

and also in the modification GCE (PGA-GCE). The 

interaction occurs between the carboxyl groups 

of the PGA film and amino groups of the DOX 

drug, and it serves as the foundation for the 

development of a straightforward sensor for DOX 

detection. DOX pre-concentration takes place on 

the PGA-GCE under open circuit conditions and is 

analyzed using the SWV method to track the 

target drug. The calibration curves generated 

were linear within the range of 2.20 to 44.5 µM, 

and a LOD of 0.45 µM was achieved. These 

outcomes demonstrate that the fabricated 

electrode is appropriate for determining DOX in 

real specimens [129]. 

Evtugyn et al. offered the development of a DNA 

sensor for detecting anthracycline preparations. 

The sensor was based on a GCE modified with 

polycarboxylated thiacax[4]arene and 

electropolymerized Neutral red (NR), which had 

a mediator covalently attached and DNA 
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electrostatically adsorbed onto it. This sensor, 

referred to as GCE/Poly(neutral 

red)/thiacax[4]arene/DNA, showed high 

sensitivity in detecting anthracycline 

preparations. The intercalation of DOX, 

idarubicin, and daunorubicin, into DNA causes an 

increase in charge transfer resistance and a 

decrease in electron exchange. This leads to 

decay in the cathodic peak of NR reduction. As a 

result of these changes, it became possible to 

accurately determine concentrations as low as 

0.1 nM for daunorubicin, 0.05 nM for DOX, and 

0.5 nM for idarubicin. In addition, the DNA 

sensor was tested for detecting DOX in artificial 

blood plasma and pharmaceuticals, yielding 

recovery rates of 95-100% [130]. 

Soleymani et al. applied a poly-arginine thin film 

on a GCE (PARG-GCE) via a step 

electrodeposition process to determine DOX in 

clinical samples. The CV results revealed that the 

DOX oxidation occurs via the participation of two 

electrons and protons at a pH=7.0, as detected by 

the PARG-GCE sensor. 

Furthermore, a significant aspect of the study is 

the occurrence of electrostatic repulsion between 

the PARG-GCE and the specific drug, leading to 

the signal amplification upon the DOX oxidation. 

This process also reduces the over-potential of 

DOX, enabling the determination of DOX in real 

specimens. Moreover, by employing the DPV 

approach, the DOX detection in plasma and 

whole blood specimens was gained. The lower 

limit of quantification for DOX in whole blood 

was calculated to be 69.0 nM, while in plasma 

samples it was determined to be 103.0 nM. The 

findings demonstrated that this sensor has the 

potential to be utilized for real-time and online 

monitoring of DOX, an important anticancer 

drug, in real specimens [131]. 

Kulikova et al. introduced a DNA sensor utilizing 

a platform consisting of a GCE modified with DNA 

sandwiched between two electro-polymerized 

layers of polyaniline (PANI/DNA/PANI/GCE). 

The surface layer was constructed through 

sequential steps involving potentiodynamic 

electrolysis, DNA drop casting, and a second 

round of electrolysis. This second electrolysis 

step was crucial, as it encapsulated the DNA 

molecules, preventing their leaching into the 

solution. To measure DOX, the DNA-sensor was 

initially incubated in a solution of Methylene 

blue. This step amplified the signal by facilitating 

DNA intercalation and creating competition 

between Methylene blue and DOX for the 

available DNA binding sites. The calibration 

curve developed was linear within the range of 

1.0 pM to 0.1 µM. The DNA sensor was tested to 

monitor artificial urine specimens, 

demonstrating acceptable recovery rates [132]. 

Porfireva and Evtugyn introduced a DNA sensor 

for DOX detection utilizing a GCE modified with 

electro-polymerized Azure B and proflavine, 

along with the adsorption of native DNA from 

salmon sperm onto a polymer film 

(GCE/Poly(Azure B-proflavine)/DNA). The 

investigations revealed a distinction in the 

behaviour between the individual drugs when 

polymerized and when in a mixture. The value of 

the charge transfer resistance exhibited a 

consistent increase corresponding to the DOX 

concentration within the range of 0.03 to 10.0 

nM, with a LOD of 0.01 nM. The DNA sensor was 

subjected to testing using DOX preparations and 

spiked specimens mimicking blood serum. The 

recovery rate was determined to be 98-106%, 

indicating the accurate and reliable performance 

of the DNA sensor in detecting DOX in these 

samples [133].  

Porfireva et al. utilized the electro-

polymerization of proflavine to physically adsorb 

native DNA, followed by the measurement of 

anthracycline drugs (daunorubicin and DOX) 

capable of intercalating with DNA. The redox 

properties of the proflavine polymers on the GCE 

and DNA deposition on the GCE/poly-proflavine 

platform (GCE/poly-proflavine /DNA) were 

described utilizing approaches such as CV, and 

scanning electron microscopy. As a result, when 

the GCE/poly-proflavine /DNA sensor was 

incubated in the drug solution, it led to an 

increase in the charge transfer resistance. The 

impedimetric response demonstrated a 

consistent increase corresponding to the 

concentration of drugs within the range of 1.0 nM 
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to 0.1 μM for DOX and 1.0 pM to 10.0 nM for 

daunorubicin. The LOD for DOX was calculated to 

be 0.3 nM, while for daunorubicin it was 

determined to be 0.001 nM [134].  

Porfireva et al. developed a voltammetric DNA 

sensor for the determine DOX utilizing a GCE 

modified with an electropolymerized film of 

Azure B, along with the physical adsorption of 

native DNA (GCE/poly-Azure B). The redox 

behaviour of the polymeric Azure B was 

investigated at different pH levels and scan rates 

to monitor its behaviour. Under optimal 

conditions, the DNA sensor enables the detection 

of DOX within the range of 0.1 µM to 0.1 nM, with 

a LOD of 7 × 10-11 M. This sensor was subjected to 

testing using commercial DOX formulations as 

well as artificial specimens mimicked the 

electrolyte content of human serum. A recovery 

rate of approximately 90% was observed, 

indicating the reliable performance of the DNA 

sensor in accurately detecting DOX in these 

samples [135]. 

Abbasi et al. fabricated a sensor by employing 

tryptophan (Trp) and polyethylene glycol (PEG)-

functionalized CoFe2O4 NPs to modify the GCE 

surface. The fabricated electrode (PEGylated-

CoFe2O4/GCE) was applied for the determine 

DOX in unprocessed plasma specimens. The 

incorporation of PEG molecules into the 

electrode design provided an antifouling effect, 

which served to inhibit the precipitation of 

macromolecules on the prepared electrode 

surface. Figure 3 demonstrates the fabrication 

steps of DOX sensor. The designed sensor 

exhibited exceptional catalytic activity for the 

DOX oxidation due to the increased conductivity 

and the presence of electro-catalytic active sites. 

This enhanced catalytic effect facilitated the 

efficient and accurate detection of DOX. After 

optimizing the sensor conditions, the proposed 

sensor achieved a low limit of quantification of 

30 ng/mL for the DOX determination. In addition, 

the linear range for the detection of DOX was 

found to be 30 ng/mL to 5.0 μg/mL [136]. 

 

Figure 3: Scheme of DOX sensor designing steps [136]  
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Conclusion 

Doxorubicin is a chemotherapy medication used 

for the treatment of diverse kinds of cancer. 

Recent surveys have shown that 

cardiomyopathies and myelosuppression are 

associated with the utilization of high doses of 

DOX. Therefore, the DOX determination in clinical 

and biological specimens is influential due to its 

significant cardiotoxic effects. Among different 

instrumental techniques, electrochemical sensor 

systems have gained more popularity. This can be 

attributed to their field-portable capabilities and 

simpler instrumentation requirements, 

ultimately leading to reduced costs. A variety of 

electrochemical sensors based on carbon 

nanostructures and polymer structures used for 

detection of DOX are presented in this review.  

Choosing a suitable electrode material is a key 

challenge in the development of electrochemical 

sensors. Understanding the molecular-level 

connection between surface structure and 

reactivity is crucial for sensor design. Having 

knowledge about interfacial reaction kinetics and 

sensing mechanisms plays an essential role in 

designing sensors with improved sensitivity, 

selectivity, and lower detection limits. 

Based on the findings, it can be concluded that 

modification of the electrode surface using 

graphene and CNTs has led to an enhancement in 

surface area and porosity. Furthermore, carbon-

based materials such as graphene and CNTs 

demonstrate effective quantification capabilities 

and are particularly appealing due to their lower 

cost compared to noble metals. In addition, it has 

been discussed that the polymer material 

contributes to providing conductivity, while the 

complex ligand used for functionality serves as a 

strategic component in the overall system. 

Hence, future research on this electrode material 

should concentrate on gaining a deeper 

understanding of interfacial reaction kinetics to 

develop innovative sensors that are appropriate 

for a wide range of practical applications. 

Moreover, as the demand for point-of-care testing 

grows, there is a greater emphasis on 

miniaturized devices. Such miniaturized 

analytical instruments not only decrease the 

volume of liquid being processed, but also offer 

quicker analysis and lower operational costs. 
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