

Original Research article

Chemical Methodologies

Journal homepage: http://chemmethod.com

Prediction of the Structural and Spectral Properties and Reactivity of the Silicon Analogs of Cyclobutadiene C4-nSinH4 (n=0-4) by Density Functional Theory Computations

Mehdi Nabati*

Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran

ARTICLE INFO

Article history

Submitted: 2023-07-20 Revised: 2023-08-04 Accepted: 2023-09-07 Manuscript ID: CHEMM-1711-1018 Checked for Plagiarism: Yes Language Editor: Ermia Aghaie Editor who approved publication: Dr. Sami Sajjadifar DOI: 10.48309/chemm.2023.52049

KEYWORDS

DFT Cyclobutadiene Silicon analog NBO analysis Reactivity

ABSTRACT

In recent years, it has been noted that the silicon analogs compounds have more pharmaceutical applications due to their excellent lipophilicity properties. The present study evaluated the structural, spectral properties, and reactivity of the silicon analogs of cyclobutadiene compound. This study was conducted based on the quantum-mechanical computations. All the studied compounds were optimized by B3LYP/6-311++G(d,p) basis set of theory. The IR computations showed no imaginary frequency for all molecules, proved the accuracy of the methods. The results revealed that, the silicon analogs have more benefits in terms of the structural and stability properties in comparison with the carbon analog.

GRAPHICAL ABSTRACT

Introduction

Cyclobuta-1, 3-diene is the smallest [n]-annulene compounds with the chemical formula C₄H₄. Firstly, it was prepared by Rowland Pettit et al. in 1965 [1]. This molecule has low stability due to its angle strain factors and antiaromaticity of its molecular structure [2]. Low stability of the cyclobutadiene contributes to its high reactivity and short lifetime [3]. Various sources claimed that the pi electrons of cyclobutadiene system are not conjugated [4]. The energy of this system is higher than that of the 1, 3-butadiene system. So, this molecule is a nonaromatic compound [5]. At high temperatures, two units of this compound react together by Diels-Alder reaction and composed a dimerized molecule [6]. The free cyclobutadiene is a transient intermediate. So, this molecule participates as a ligand in various organometallic compounds such as cyclobutadiene tricarbonyl complexes [7]. As another application of this molecule, it is a part of different medicine structures [8]. In recent years, many scientists had tried to solve the instability and antiaromaticity problems of this annulene by entering silicon atoms in the structure of cyclobutadiene [9, 10]. This comes back to the weakness and high reactivity of silicon pi bonds. The second reason is the high polarity of silicon atoms [10, 11]. So, one can hope that the silicon analogs of this molecule would have had more applications than cyclobutadiene compound. In last decades, various attempts were done for preparation of these analogs [7-11], but its chemistry is very novel and needs more researches to complete the understanding their structures and applications. So, the present study aims at providing some useful information about the structural and spectral properties, reactivity, and natural bond orbital (NBO) population analysis of the cyclobutadiene molecule and its silicon analogs. Our studies are based on density functional theory (DFT) computations. Therefore, I hope this study will be a big window to the world of the silicon analogs of [4]-annulene.

Computational methods

this study, the quantum mechanical In computations [12-18] were used and the molecular structure of the mentioned compounds were optimized using density functional theory (DFT) method (B3LYP functional) with 6-311++G(d,p) basis set of theory by the Gaussian 03W program package [19-22]. Also, the ChemBioDraw Ultra 13.0, GaussView 6.0.16 and GaussSum 3.0 programs were used for drawing molecules, visualizing molecular structures and obtaining spectral graphs, respectively. After optimizing the structures, the vibrational frequencies were computed for all molecules. It had not seen any imaginary frequency for all compounds. So, it proves the accuracy of our computations.

Results and discussion

Structural study of molecules

Scheme 1 indicates the molecular structures of cyclobuta-1, 3-diene (CCCC), silete (SCCC), 1,2disilete (SSCC), 1,3-disilete (SCSC), trisilete (SSSC) and tetrasilete (SSSS) compounds. The geometry of these molecules were optimized by B3LYP/6-311++G (d,p) basis set of theory. The optimized structures of the mentioned compounds are shown in Figure 1. It's easy to see that changing the carbon atoms by silicon atoms causes the disturbing of the regular molecular structures. As seen in Figure 1, the pi bonds of two compounds CCCC and SCCC are not conjugated. Also, the structure of other molecules is twisted. So, all studied molecule structures cannot be antiaromatic. Table 1 presents the bond lengths data of the studied molecules. It is seen two types of C-C bonds for CCCC molecule with 1.333 and 1.577 Å bond lengths. This shows the non-aromaticity property of this molecule. Other molecules indicate different C-C, C-Si and Si-Si bond lengths too. So, it can be understood that, the pi bonds in our selected molecules are not conjugate. Table 2 similar to Table 1 proves the non-armaticity property of the molecules. We can see the bond order (B.O.) of C-C, C-Si and Si-Si bonds in Table 2. For instance, the C-C bonds of

CCCC molecular structure do not reveals the unique bond order. The Si-Si bond orders of SSSS molecule are 1.012 Å and 1.272 Å. Based on these data (bond lengths and bon orders), the both carbon and silicon analogs of cyclobutadiene molecule have twisted and non-aromatic structures. As can be seen in Table 3, the summation of sigma and pi bond orders of ring is reduced by replacing of silicon atoms with carbon atoms in the studied molecules. This happens because of the electropositive property of silicon atoms. This factor indicates the non-aromaticity property of the molecules too. Another factor for study of aromaticity of unsaturated rings is nucleus independent chemical shift (NICS) character [23-25]. The positive and negative NICSs show the antiaromaticity and aromaticity properties of a compound, respectively. The computed NICS data of all molecules are collected in Table 4. From these data, the CCCC, SCCC and SCSC structures are antiaromatic. In contrast, the SSCC, SSSC and SSSS structures are aromatic compounds. While we saw all compounds are non-aromatic molecules. So, this factor cannot be used for expression of aromaticity property of the selected molecules.

Global and local reactivity of molecules

It is well known that global reactivity indices defined within conceptual DFT is a powerful tool explain reactivity and the molecular to properties. Consequently, global hardness (ŋ), electronic chemical potential (μ), electronegativity (χ), global softness (S), nucleophilicity index (N), and electrophilicity index (ω) for the all compounds were calculated using the following equations [16-25]:

$$\eta (eV) = \frac{(\varepsilon_{LUMO} - \varepsilon_{HOMO})}{2}$$
$$\mu (eV) = -\frac{(\varepsilon_{LUMO} + \varepsilon_{HOMO})}{2}$$
$$\chi (eV) = -\mu$$
$$S (eV) = \frac{1}{2\eta}$$
$$(eV) = \varepsilon_{HOMO} - \varepsilon_{HOMO(Tetracyanoethylene)}$$
$$\omega (eV) = \frac{\mu^2}{2\eta}$$

Ν

The data of global reactivity calculations for all molecules are collected in Tables 5. Stability of molecules is relative to the frontier orbitals (HOMO and LUMO) energies of them. The compounds with high HOMO-LUMO energies gap are more stable than the molecules with low HOMO-LUMO energies gap. From the global hardness data, the stability order of the molecules is: SSCC > CCCC > SSSC > SSSS > SCCC > SCSC. We can see from this order that the SCSC molecular structure has the lowest stability and the highest reactivity among all compounds. Also, the reactivity of SSSS molecule is more than the CCCC compound. On the other hand, the electrophilisity property order of the molecules is: CCCC > SSCC > SSSC > SCCC > SCSC > SSSS. This order indicates the replacing silicon atoms instead of carbon atoms in molecular structure of cyclobutadiene molecule reduced the electrophilicity property of the compound. Figure 2 demonstrates the density of states (DOS) plots of the molecules. As can be seen in the DOS plots; all molecules have more HOMO frontier orbitals than LUMO orbitals. So, all compounds prefer to react with nucleophiles.

Table 6 presents the natural charges data of the atoms of the structures. We see the carbon and silicon atoms show negative and positive charges on themselves. In CCCC molecule, all four carbon atoms show unique negative natural charge. So, only electrophiles can attack to this structure. In contrast, the other molecules can react with both electrophiles and nucleophiles. The electrophiles attack to carbon atoms and nucleophiles show tendency to react with silicon atoms. Also, the four silicon atoms of SSSS molecular structure have not unique reactivity with active nucleophiles and electrophiles.

Spectral study of molecules

There are several spectroscopic techniques which can be used to identify the organic molecules: infrared (IR), mass spectroscopy (MS) UV-Visible spectroscopy (UV-Vis) and nuclear magnetic resonance (NMR) [26]. IR, NMR and UV-Vis spectroscopy are based on observing the

of frequencies electromagnetic radiation absorbed and emitted by molecules. IR [Harmonic frequencies (cm⁻¹), intensities (KM/Mole)]: CCCC: 535.3079 (0.0009), 587.5747 (152.6736),600.8853 (0.0017),702.7518 (0.0001),(9.6274), 886.4584 1055.1952 (0.5520), 1255.8694 (39.7522), 1617.8887 (0.0029),1624.4333 (8.3031),3208.4372 (10.7371), 3230.0171 (18.6088), and 3240.1003 (0.0001). SCCC: 258.9831 (13.0312), 361.8772 (28.3259),469.7359 (5.7323),521.2737 (12.7964), 632.4513 (106.4750),675.5702 (10.7117),780.2640 (71.3542),837.7580 (2.6358), 997.5477 (12.7165),923.6545 (23.5675), 1007.7272 (31.3322), 1127.0949 (31.8691), 1240.9835 (4.6619), 1532.8829 (56.6132), 2212.4929 (103.9822), 3123.3690 (26.7210), 3262.6395 (0.3958), and 3281.5904 (0.1341). SSCC: 295.0648 (1.0762), 315.3322 (1.1790),390.2509 (22.7673), 478.3536 (3.3505), (1.6743), 601.8483 540.6453 742.6100 (25.9051),629.6918 (12.4267),(17.7836),756.7392 (122.0962), 813.2838 (78.1008),930.0689 (2.9339),973.3476 (1.1806),1183.1172 (18.7400),1399.4039 (17.7099), 1994.0995 (267.8572), 2131.6303 (185.9518), 3077.2130 (2.2754), and 3201.4781 (0.6265). SCSC: 132.2318 (35.3830), 439.7340 (0.0001),(110.4807), 475.6387 552.1272 (0.0001),569.3793 (110.7612),703.7180 (0.0431),756.4359 (57.0555),950.5451 (162.9173), 953.6606 (0.0010),1017.2681 (267.1057), 2205.9613 (323.1345), 2215.8670 (0.0015), 3289.7664 (0.4642), and 3290.4896 (12.5230). SSSC: 181.2672 (2.6939), 291.9805 (0.8444), 295.1467 (2.3375), 377.9971 (0.5024), 449.6328 (7.2036), 501.7176 (1.5522), 583.3426 (5.2491),590.9728 (10.9657),612.7247 (6.2993), 690.8120 (36.1373), 760.0126 (10.2321),947.5508 (120.2733),788.7831 (113.0875),960.5712 (78.8555), 2019.9376 (223.8703), 2156.1265 (308.4768), 2165.1868 and 3205.7184 (0.3060). SSSS: (52.8304), (26.9009),(32.7654), 115.3881 235.4028 257.7249 (21.7626),329.6320 (0.0386),355.0223 (1.6252), 412.0029 (4.3798), 424.5655 (19.9269),488.2611 (4.5187),501.6938

(1.3771),537.0069 (1.5171), 586.8543 (13.1764),600.9626 (1.2903),653.6382 (0.9910),731.5103 (28.1948), 2092.3927 (158.1892), 2110.4361 (239.1649), 2155.8095 (192.0354), and 2164.0137 (61.0495). As can be seen, the stretching vibrations of C-H and Si-H appear at frequencies 3000-3300 and 2000-2200 cm⁻¹ range, respectively. UV-Vis [Wavelength (nm), energy (cm⁻¹)]: CCCC: (39382.712, HOMO 253.919 to LUMO+2 transition (96%)), 267.534 (37378.410, HOMO to LUMO+1 transition (100%)) and 473.363 (21125.420 HOMO to LUMO transition (77%)). SCCC: 313.350 (31913.160, HOMO to LUMO+2 transition (91%) and HOMO to LUMO+3 transition (4%)), 353.118 (28319.128, HOMO to LUMO+1 transition (95%)) and 745.989 (13405.027 HOMO to LUMO transition (74%)). SSCC: 283.313 (35296.679, HOMO-1 to LUMO transition (48%), HOMO to LUMO+2 transition (35%) and HOMO to LUMO+1 transition (6%)), (32347.895, 309.139 H0M0-1 to LUMO transition (15%), HOMO to LUMO+1 transition (68%) and HOMO-2 to LUMO transition (8%)) and 438.708 (22794.192 HOMO to LUMO transition (90%) and HOMO to LUMO+1 transition (3%)). SCSC: 335.734 (29785.454, HOMO to LUMO+2 transition (97%)), 391.572 (25538.109, HOMO to LUMO+1 transition (98%)) and 979.099 (10213.469 HOMO to LUMO transition (94%)). SSSC: 313.263 (31922.032, HOMO-1 to LUMO transition (89%) and HOMO to LUMO+2 transition (4%)), 342.146 (29227.315, HOMO to LUMO+1 transition (73%), HOMO to LUMO+2 transition (11%), HOMO-1 to LUMO transition (3%) and HOMO-1 to LUMO+3 transition (2%)) and 487.739 (20502.755 HOMO to LUMO transition (97%)). SSSS: 397.446 (25160.639, HOMO-2 to LUMO transition (91%) and HOMO-1 to LUMO+1 transition (2%)), 470.811 (21239.951, HOMO to LUM0+1 transition (96%)) and 490.518 (20386.611, HOMO-1 to LUMO transition (13%) and HOMO to LUMO transition (65%)). We can see the HOMO/LUMO electronic transitions of cyclobutadiene and its silicon analogs happen at about 470-490 nm wavelengths.

The NMR technique is a good method for identification of the structure of the organic compounds [27]. The ¹H, ¹³C and ²⁹Si chemical shifts of the studied molecules are listed in Table 7. As can be seen, the chemical shifts of all ¹H and ¹³C nucleuses of cyclobutadiene structure are 5.9 and 147.4, respectively. This is happened because of the planar structure of cyclobutadiene molecule. On the other hand, we see various chemical shifts for these atoms when silicon atom entered instead of carbon atom in the structure. In previous sections, we saw the structure of molecules is twisted by entering silicon atom. So, the atoms feel different magnetic field and because of this reason the various chemical shifts are shown for nucleuses. In overall, the nucleus with electron deficiency is seen at high chemical shifts. In contrast, the lowest chemical shifts are belonged to the atomic cores with surplus electron. For example; the chemical shifts of proton and carbon nucleuses in SCSC structure are 0.4 and 38.0, respectively. The carbon atoms are connected to two electropositive atoms (silicon atoms) in SCSC molecular structure. Also, the silicon nucleus chemical shift is shown at above 200 Hz.

Natural bond orbital (NBO) study of molecules

In quantum chemistry, a natural bond orbital or NBO is a calculated bonding orbital with

maximum electron density [28-30]. The analysis of natural bond orbitals (NBOs) population of bonds can give us more important information about the structure of unknown molecules. Table 8 has collected the data of the NBO population analysis of the bonds of the selected molecules. It can be seen from the data, in CCCC molecular structure, carbon atoms participate with more p orbitals in C-C bonds than C-H bonds. It happens because of the angular pressure of the cyclobutadiene ring.

By entering the silicon atoms instead of the carbon atoms in molecular structures, low p orbitals of carbon atoms are participated in C-C and C-Si bonds. In these structures the angular pressure of rings reduces because the covalent radius of silicon atom is bigger than the carbon atom. Also, the carbon atoms that are connected to the silicon atoms participate with more p orbitals in C-H bonds than carbon atoms that are connected to other carbon atoms. So, these hydrogen atoms have lower acidity than others. On the other hand, the lowest acidity is related to the hydrogen atoms of Si-H bonds. Another important subject is related to the silicon atoms. These atoms use d orbitals in construction of bonds with other atoms. So, more silicon atoms in one structure cause more twisted structure.

Figure 1: The theoretical geometric structure of the studied molecules

Figure 2: The density of states (DOS) graphs of the studied molecules

Nabati M., / Chem. Methodol., 2023, 7(9) 676-687

Bonds	CCCC	SCCC	SSCC	SCSC	SSSC	SSSS
C1-C2	1.577	1.539	1.363	-	-	-
C2-C3	1.333	1.344	-	-	-	-
C3-C4	1.577	-	-	-	-	-
C4-C1	1.333	-	-	-	-	-
С1-Н	1.081	1.076	1.082	1.075	1.082	-
С2-Н	1.081	1.089	1.093	-	-	-
С3-Н	1.081	1.077	-	1.075	-	-
С4-Н	1.081	-	-	-	-	-
C3-Si4	-	1.918	-	1.782	-	-
Si4-C1	-	1.709	1.806	1.782	1.778	-
Si4-H	-	1.486	1.502	1.487	1.496	1.509
C2-Si3	-	-	2.000	-	-	-
Si3-Si4	-	-	2.345	-	2.386	2.358
Si3-H	-	-	1.531	-	1.524	1.497
C1-Si2	-	-	-	1.782	1.778	-
Si2-C3	-	-	-	1.782	-	-
Si2-H	-	-	-	1.487	1.496	1.503
Si2-Si3	-	-	-	-	2.386	2.258
Si1-Si2	-	-	-	-	-	2.258
Si4-Si1	-	-	-	-	-	2.358
Si1-H	-	-	-	-	-	1.497

Table 1: Bond lengths data of the studied molecules

Table 2: Bond orders data of the studied molecules

Bonds	CCCC	SCCC	SSCC	SCSC	SSSC	SSSS
C1-C2	0.978	1.033	1.722	-	-	-
C2-C3	2.004	1.930	-	-	-	-
C3-C4	0.978	-	-	-	-	-
C4-C1	2.004	-	-	-	-	-
С1-Н	0.928	0.929	0.902	0.918	0.904	-
С2-Н	0.928	0.899	0.878	-	-	-
С3-Н	0.928	0.924	-	0.918	-	-
С4-Н	0.928	-	-	-	-	-
C3-Si4	-	0.851	-	1.095	-	-
Si4-C1	-	1.618	0.965	1.095	1.211	-
Si4-H	-	0.905	0.894	0.908	0.904	0.914
C2-Si3	-	-	0.713	-	-	-
Si3-Si4	-	-	0.859	-	0.957	1.012
Si3-H	-	-	0.894	-	0.908	0.910
C1-Si2	-	-	-	1.095	1.210	-
Si2-C3	-	-	-	1.095	-	-
Si2-H	-	-	-	0.908	0.904	0.907
Si2-Si3	-	-	-	-	0.957	1.272
Si1-Si2	-	-	-	-	-	1.272
Si4-Si1	-	-	-	-	-	1.012
Si1-H	-	-	-	-	-	0.910

Nabati M., / Chem. Methodol., 2023, 7(9) 676-687

Table 3. Fotal bond of acts data of the statica molecule

Compounds	Sum of sigma and pi bond orders of ring
CCCC	5.964
SCCC	5.432
SSCC	4.259
SCSC	4.380
SSSC	4.335
SSSS	4.568

Table 4: NICS(0) data of the studied molecules

Compounds	NICS(0)
CCCC	26.528
SCCC	20.413
SSCC	-14.885
SCSC	12.091
SSSC	-8.403
SSSS	-14.241

Table 5: Global reactivity descriptors data of the studied molecules

Compound	HOMO (eV)	LUMO (eV)	GAP (eV)	χ (eV)	μ (eV)	η (eV)	S (eV)-1	ω (eV)
CCCC	-5.44	-1.90	3.54	-3.67	3.67	1.77	0.28	3.77
SCCC	-4.89	-2.37	2.52	-3.63	3.63	1.26	0.40	5.27
SSCC	-5.95	-2.26	3.69	-4.11	4.11	1.85	0.27	4.56
SCSC	-4.79	-2.39	2.40	-3.59	3.59	1.20	0.42	5.41
SSSC	-5.86	-2.36	3.50	-4.11	4.11	1.75	0.29	4.90
SSSS	-5.97	-3.10	2.87	-4.54	4.54	1.44	0.35	7.21

Table 6: Natural charges data of the atoms of the studied molecules

Atoms	CCCC	SCCC	SSCC	SCSC	SSSC	SSSS
H1	0.199	0.226	0.233	0.250	0.242	-0.131
H2	0.199	0.205	0.227	-0.158	-0.144	-0.127
H3	0.199	0.220	-0.161	0.250	-0.183	-0.131
H4	0.199	-0.158	-0.219	-0.158	-0.144	-0.144
C1	-0.199	-0.910	-0.613	-1.524	-1.342	-
C2	-0.199	-0.146	-0.624	-	-	-
C3	-0.199	-0.662	-	-1.254	-	-
C4	-0.199	-	-	-	-	-
Si1	-	-	-	-	-	0.238
Si2	-	-	-	1.432	0.830	0.080
Si3	-	-	0.823	-	-0.088	0.238
Si4	-	1.226	0.334	1.432	0.830	-0.023

Nabati M., / Chem. Methodol., 2023, 7(9) 676-687

Tuble 71 The chemical sints data of the atoms of the stated molecules						
Nucleus	CCCC	SCCC	SSCC	SCSC	SSSC	SSSS
H1	5.897	4.671	8.301	0.364	7.178	8.017
H2	5.896	6.675	9.000	8.650	8.411	9.861
H3	5.896	3.441	5.008	0.364	3.336	8.012
H4	5.897	8.172	6.191	8.650	8.410	4.396
C1	147.409	134.914	171.466	38.032	163.659	-
C2	147.411	173.831	154.090	-	-	-
C3	147.387	96.886	-	38.033	-	-
C4	147.440	-	-	-	-	-
Si1	-	-	-	-	-	236.721
Si2	-	-	-	204.748	208.704	238.916
Si3	-	-	-25.152	-	-140.006	236.486
Si4	-	141.311	63.788	204.749	208.479	-87.229

Table 7: The chemical shifts data of the atoms of the studied molecules

Table 8: The NBO population analysis data of the studied molecules

Compounds	Bonds	Occupancy	Population/Bond orbital/Hybrids
	σ(C1-C2)	1.96534	50.00% C1 (sp ^{2.71}), 50.00% C2 (sp ^{2.71})
	σ(C2-C3)	1.99299	50.00% C2 (sp), 50.00% C3 (sp)
	π(C2-C3)	1.98364	50.00% C2 (sp ^{1.64}), 50.00% C3 (sp ^{1.64})
	σ(C3-C4)	1.96534	50.00% C3 (sp ^{2.71}), 50.00% C4 (sp ^{2.71})
CCCC	σ(C1-C4)	1.99299	50.00% C1 (sp), 50.00% C4 (sp)
	π(C1-C4)	1.98363	50.00% C1 (sp ^{1.63}), 50.00% C4 (sp ^{1.64})
	σ(C1-H)	1.99185	60.54% C1 (sp ^{1.85}), 39.46% H (s)
	σ(C2-H)	1.99185	60.54% C2 (sp ^{1.85}), 39.46% H (s)
	σ(C3-H)	1.99185	60.54% C3 (sp ^{1.85}), 39.46% H (s)
	σ(C4-H)	1.99185	60.54% C4 (sp ^{1.85}), 39.46% H (s)
	σ(C1-C2)	1.96435	49.29% C1 (sp ^{2.56}), 50.71% C2 (sp ^{2.26})
	σ(C2-C3)	1.98295	50.69% C2 (sp ^{1.62}), 49.31% C3 (sp ^{1.62})
	π(C2-C3)	1.98724	43.50% C2 (sp), 56.50% C3 (sp)
	σ(C3-Si4)	1.94486	65.99% C3 (sp ^{3.14}), 34.01% Si4 (sp ^{2.21})
SCCC	σ(C1-Si4)	1.96934	68.91% C1 (sp ^{1.94}), 31.09% Si4 (sp ^{1.56} d ^{0.02})
	π(C1-Si4)	1.92046	69.40% C1 (sp), 30.60% Si4 (spd ^{0.01})
	σ(C1-H)	1.99237	61.67% C1 (sp ^{1.65}), 38.33% H (s)
	σ(C2-H)	1.97775	60.98% C2 (sp ^{2.21}), 39.02% H (s)
	σ(C3-H)	1.98745	61.33% C3 (sp ^{1.66}), 38.67% H (s)
	σ(Si4-H)	1.96811	42.23% Si4 (sp ^{2.28} d ^{0.02}), 57.77% H (s)
	σ(C1-C2)	1.98730	49.85% C1 (sp ^{1.88} d ^{0.01}), 50.15% C2 (sp ^{1.82})
	π(C1-C2)	1.80071	50.74% C1 (sp $^{87.60}$ d $^{0.28}$), 49.26% C2 (sp $^{99.99}$ d $^{0.19}$)
	σ(C2-Si3)	1.79081	77.33% C2 (sp ^{1.89}), 22.67% Si3 (sp ^{8.07} d ^{0.11})
	σ(Si3-Si4)	1.88469	31.54% Si3 (sp ^{15.95} d ^{0.13}), 68.46% Si4 (sp ^{1.65} d ^{0.01})
SSCC	σ(C1-Si4)	1.95685	69.46% C1 (sp ^{2.60} d ^{0.01}), 30.54% Si4 (sp ^{2.60} d ^{0.03})
	σ(C1-H)	1.98245	61.98% C1 (sp ^{1.76}), 38.02% H (s)
	σ(C2-H)	1.96464	62.27% C2 (sp ^{2.40}), 37.73% H (s)
	σ(Si3-H)	1.95319	38.02% Si3 (sp ^{6.54} d ^{0.06}), 61.98% H (s)
	σ(Si4-H)	1.96950	42.56% Si4 (sp ^{2.16} d ^{0.02}), 57.44% H (s)
	σ(C1-Si2)	1.95712	68.94% C1 (sp ^{2.27}), 31.06% Si2 (sp ^{1.84} d ^{0.02})
SCSC	σ(Si2-C3)	1.95712	31.06% Si2 (sp ^{1.84} d ^{0.02}), 68.94% C3 (sp ^{2.27})
5050	π(Si2-C3)	1.74504	12.76% Si2 (spd ^{0.04}), 87.24% C3 (sp)
	σ(C3-Si4)	1.95712	68.94% C3 (sp ^{2.27}), 31.06% Si4 (sp ^{1.84} d ^{0.02})

Nahati M	/ Chem	Methodol	2023	7(9) 676-687	
Nubuti M.,	/ 6110111	. Methouol.,	, 2023,	, / () / 0 / 0 - 00 /	

	σ(C1-Si4)	1.95712	68.94% C1 (sp ^{2.27}), 31.06% Si4 (sp ^{1.84} d ^{0.02})
	π(C1-Si4)	1.74504	87.24% C1 (sp), 12.76% Si4 (spd ^{0.04})
	σ(C1-H)	1.99092	62.90% C1 (sp ^{1.58}), 37.10% H (s)
	σ(Si2-H)	1.97456	42.54% Si2 (sp ^{2.32} d ^{0.02}), 57.46% H (s)
	σ(C3-H)	1.99092	62.90% C3 (sp ^{1.58}), 37.10% H (s)
	σ(Si4-H)	1.97456	42.54% Si4 (sp ^{2.32} d ^{0.02}), 57.46% H (s)
	σ(C1-Si2)	1.96977	71.13% C1 (sp ^{2.17}), 28.87% Si2 (sp ^{2.23} d ^{0.02})
	σ(Si2-Si3)	1.88052	62.38% Si2 (sp ^{1.68} d ^{0.01}), 37.62% Si3 (sp ^{11.83} d ^{0.09})
SSSC	σ(Si3-Si4)	1.83645	38.29% Si3 (sp ^{11.83} d ^{0.09}), 61.71% Si4 (sp ^{1.59} d ^{0.01})
	σ(C1-Si4)	1.97033	71.13% C1 (sp ^{2.15}), 28.87% Si4 (sp ^{2.23} d ^{0.02})
	π(C1-Si4)	1.61299	74.86% C1 (sp ^{76.90} d ^{0.11}), 25.14% Si4 (sp ^{99.99} d ^{38.76})
	σ(C1-H)	1.99048	62.93% C1 (sp ^{1.83}), 37.07% H (s)
	σ(Si2-H)	1.97535	43.49% Si2 (sp ^{2.18} d ^{0.02}), 56.51% H (s)
	σ(Si3-H)	1.95381	39.91% Si3 (sp ^{5.96} d ^{0.05}), 60.09% H (s)
	σ(Si4-H)	1.97436	43.47% Si4 (sp ^{2.21} d ^{0.02}), 56.53% H (s)
	σ(Si1-Si2)	1.93704	47.92% Si1 (sp ^{2.52} d ^{0.02}), 52.08% Si2 (sp ^{2.13} d ^{0.01})
	σ(Si2-Si3)	1.93706	52.09% Si2 (sp ^{2.12} d ^{0.01}), 47.91% Si3 (sp ^{2.52} d ^{0.02})
	σ(Si3-Si4)	1.91704	63.16% Si3 (sp ^{1.70} d ^{0.01}), 36.84% Si4 (sp ^{12.08} d ^{0.09})
SSSS	σ(Si1-Si4)	1.91710	63.15% Si1 (sp ^{1.70} d ^{0.01}), 36.85% Si4 (sp ^{12.07} d ^{0.09})
	σ(Si1-H)	1.97935	44.28% Si1 (sp ^{2.12} d ^{0.01}), 55.72% H (s)
	σ(Si2-H)	1.98308	45.14% Si2 (sp ^{1.81} d ^{0.01}), 54.86% H (s)
	σ(Si3-H)	1.97934	44.28% Si3 (sp ^{2.12} d ^{0.01}), 55.72% H (s)
	σ(Si4-H)	1.94188	41.54% Si4 (sp ^{5.68} d ^{0.04}), 58.46% H (s)

Conclusions

The main goal of this study is study of the structural and spectral properties and reactivity of the silicon analogs of cyclobutadiene compound. The study was conducted based on the quantum-mechanical computations. All the selected molecules were optimized by B3LYP/6-311++G(d,p) basis set of theory. From the computations and mathematical calculations, the following conclusions were drawn.

1. All studied molecule structures can't be antiaromatic and they are non-aromatic compounds.

2. The SCSC molecular structure has the lowest stability and the highest reactivity among all compounds.

3. The reactivity of SSSS molecule is more than the CCCC compound.

4. The replacing silicon atoms instead of carbon atoms in molecular structure of cyclobutadiene molecule reduce the electrophilicity property of the compound.

5. All compounds prefer to react with nucleophiles.

6. The electrophiles attack to carbon atoms and nucleophiles reveals a significant tendency to react with the silicon atoms.

7. The four silicon atoms of SSSS molecular structure have not unique reactivity with active nucleophiles and electrophiles.

8. The stretching vibrations of C-H and Si-H appear at the frequency range of 3000-3300 and 2000-2200 cm⁻¹, respectively.

9. The HOMO/LUMO electronic transitions of cyclobutadiene and its silicon analogs happen at about 470-490 nm wavelengths.

10. The nucleuses with electron deficiency are seen at high chemical shifts. In contrast, the lowest chemical shifts are belonged to the nucleuses with surplus electron.

11. Carbon atoms participate with more p orbitals in C-C bonds than C-H bonds.

12. Low p orbitals of carbon atoms are participated in C-C and C-Si bonds by entering the silicon atoms instead of the carbon atoms in molecular structures,

13. The lowest acidity is related to the hydrogen atoms of Si-H bonds.

14. The Si-C-H hydrogen atoms have lower acidity than the C-C-H hydrogen atoms.

Conflict of interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The author is grateful to Miss. Maliheh-Alsadat Kermanian for her significant contribution.

References

[1]. Kostenko A., Tumanskii B., Kobayashi Y., Nakamoto M., Sekiguchi A., Apeloig Y., Spectroscopic observation of the triplet diradical state of a cyclobutadiene, *Angewandte Chemie International Edition*, 2017, **56**:10183 [Crossref], [Google Scholar], [Publisher]

[2]. Shvydkiy N.V., Perekalin D.S., Cyclobutadiene complexes of platinum metals. *Coordination Chemistry Reviews*, 2017, **349:**156 [Crossref], [Google Scholar], [Publisher]

[3]. Karadakov P.B., Hearnshaw P., Horner K.E., Magnetic shielding, aromaticity, antiaromaticity, and bonding in the low-lying electronic states of benzene and cyclobutadiene, *The Journal of Organic Chemistry*, 2016, **81:**11346 [Crossref], [Google Scholar], [Publisher]

[4]. Han G.D., Collins W.R., Andrew T.L., Bulovic V., Swager T.M., Cyclobutadiene–C60 Adducts: N-Type Materials for Organic Photovoltaic Cells with High VOC. *Advanced functional materials*, 2013, **23:**3061 [Crossref], [Google Scholar], [Publisher]

[5]. Afanasyev O.L., Tsygankov A.A., Usanov D.L., Perekalin D. ., Shvydkiy N.V., Maleev V.I., Kudinov A.R., Chusov D., Cyclobutadiene metal complexes: a new class of highly selective catalysts. An application to direct reductive amination, *ACS Catalysis*, 2016, **6**:2043 [Crossref], [Google Scholar], [Publisher]

[6]. Wu Y., Liu L., Su J., Zhu J., Ji Z., Zhao Y.,
Isolation of a heavier cyclobutadiene analogue: 2,
4-digerma-1, 3-diphosphacyclobutadiene.
Organometallics, 2016, 35:1593 [Crossref],
[Google Scholar], [Publisher]

[7]. Charistos N. D., Papadopoulos A. G., Sigalas M.P., Interpretation of electron delocalization in

benzene, cyclobutadiene, and borazine based on visualization of individual molecular orbital contributions to the induced magnetic field. *The Journal of Physical Chemistry A*, 2014, **118**:1113 [<u>Crossref</u>], [<u>Google Scholar</u>], [<u>Publisher</u>]

[8]. Onuma K., Suzuki K., Yamashita M., Rhombic Cyclobutadiene with a Boryl/Amino-Substitution Pattern: Boryl Group Migration Induced by Reaction with Water, *Organic letters*, 2015, **17:**1212 [Crossref], [Google Scholar], [Publisher]

[9]. Perekalin D.S., Shvydkiy N.V., Nelyubina Y.V., Kudinov A.R., General Route to Cyclobutadiene Rhodium Complexes, *Chemistry–A European Journal*, 2015, **21:**16344 [Crossref], [Google Scholar], [Publisher]

[10]. Nabati M., Mahkam M., DFT Study of the Six-Membered Heterocyclic SinN6-nHn (n= 0-6): Stability and Aromaticity, *Organic Chemistry Research*, 2016, **2**:70 [Crossref], [Google Scholar], [Publisher]

[11]. Nabati M., Mahkam M., Synthesis and characterization of novel silyl derivatives of curcumin, *Iranian chemical communication*, 2014, **2:**129 [<u>Google Scholar</u>], [Publisher]

[12] Nabati M., Mahkam M., A quantummechanical study on nitro and amino derivatives of 1, 2, 3, 4-tetrazine, *Journal of Physical and Theoretical Chemistry*, 2015, **12**:121 [Google Scholar], [Publisher]

[13]. Nabati M., A quantum-mechanical investigation of functional group effect on 5, 5'-disubstituted-1, 1'-azobis (tetrazoles), *Journal of Physical and theoretical Chemistry, IAU Iran*, 2015, **12:**325 [Google Scholar], [Publisher]

[14]. Nabati M., Prediction of the structural and spectral properties for L, L-ethylenedicysteine diethylester (EC) and its complex with Technetium-99m radionuclide, *Journal of Physical* & *Theoretical Chemistry*, 2017, **14:**49 [Google Scholar], [Publisher]

[15]. Nabati M., Mahkam M., DFT Study of 1Htetrazolyl derivatives of tetrahedrane, *Journal of Physical & Theoretical Chemistry*, 2015, **12**:33 [Google Scholar], [Publisher]

[16]. Nabati M., Mahkam M., Gholizade, A.Y., Theoretical study of tetrahedrane derivatives, *Journal of Physical & Theoretical Chemistry*, 2016, **13:**35 [Google Scholar], [Publisher] [17]. Nabati M., Density functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP), *Journal of Physical & Theoretical Chemistry*, 2016, **13**:133 [Google Scholar], [Publisher]

[18]. Nabati M., Mahkam M., Natural Bond Orbital(NBO)Studyof(5H-tetrazol-1-yl)(triphenylphosphine)gold[Au(tetz)(PPh3)]. InorganicChemistryResearch, 2016,1:131[Crossref],[GoogleScholar], [Publisher]

[19]. Nabati M., Mahkam M., Computational Study of Octasilacubane Structural Properties with Density Functional Theory Method, *Silicon*, 2016,
8:461 [Crossref], [Google Scholar], [Publisher]

[20]. Nabati M., Mahkam M., Density functional theory study of molecular structure, chemical reactivity and radical scavenging potency of (+)-curcutetraol, *Iranian Journal of Organic Chemistry*, 2015, **7**:1631 [Google Scholar], [Publisher]

[21]. Nabati M., 1, 3, 4-Thiadiazole rings as π -spacers in triphenylamine based dyes: A density functional theory study of reactivity, UV/Visible spectra, structural and optical properties. *Iranian Journal of Organic Chemistry*, 2015, **7:**1669 [Google Scholar], [Publisher]

[22]. Nabati M., A DFT treatment on nitro derivatives of pyrazine, *Iranian Journal of Organic Chemistry*, 2016, **8:**1703 [Google Scholar], [Publisher]

[23]. Nabati M., Hojjati M., Structural and energetically study on nitro and amino derivatives of 1, 2, 3, 5-

Tetrazine, *Iranian Journal of Organic Chemistry*, 2016, **8**:1777 [Publisher]

[24]. Nabati M., A computational study on the 5substituted 1H-tetrazoles: Structure, stability and aromaticity, *Iranian Journal of Organic Chemistry*, 2016, **8**:1803 [Google Scholar], [Publisher]

[25]. Nabati M., DFT investigation of 1, 1'disubstituted-5, 5'-azotetrazoles: a study of functional group effect, *Iranian Journal of Organic Chemistry*, 2016, **8:**1817 [Google Scholar], [Publisher]

[26]. Nabati M., Quantum-chemical study of stability, aromaticity and reactivity properties on O-and S-heterocyclic divalent fivememberedRings C2H2X2M (X= O and S; M= C, Si, Ge, Sn and Pb), *Iranian Journal of Organic Chemistry*, 2016, **8**:1935 [Google Scholar], [Publisher]

М., [27]. Nabati Quantum-mechanical investigation of 1-benzyl-1, 4, 7, 10tetraazacyclododecane: a density functional theory (DFT) treatment, Iranian Journal of Organic Chemistry, 2017, **9:**2045 [Google Scholar], [Publisher]

[28]. Nabati M., Salehi H., Theoretical investigation on the H and 13 C chemical shifts of TRODAT-1 compound with density functional theory and Hartree-Fock computational methods, *Iranian Journal of Organic Chemistry*, 2017, **9**:2013 [Google Scholar], [Publisher]

[29]. Nabati M., Mofrad M.H., Kermanian M., Sarshar S., Theoretical studies on the structural properties, aromaticity and reactivity of 1Hphosphole derivatives, *Iranian Journal of Organic Chemistry*, 2017, **9**:1981 [Publisher]

[30]. Nabati M., Kermanian M., Maghsoudloo-Mahalli A., Sarshar S., DFT study of [18F]flubatine, *Iranian Journal of Organic Chemistry*, 2017, **9:**2067 [Publisher]

HOW TO CITE THIS ARTICLE

Mehdi Nabati*.Prediction of the Structural and Spectral Properties and Reactivity of the Silicon Analogs of Cyclobutadiene C4-nSinH4 (n=0-4) by Density Functional Theory Computations. *Chem. Methodol.*, 2023, 7(9) 676-687 DOI: <u>https://doi.org/10.48309/chemm.2023.52049</u> URL: <u>https://www.chemmethod.com/article 52049.html</u>