Impact Factor: 5.6     h-index: 27

Document Type : Original Article

Authors

1 LAC, Laboratory of Applied Chemistry, Faculty ofScience and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco

2 Equipe Matériaux, Environnement & Modélisation,ESTM, University Moulay Ismail, Meknes, Morocco

Abstract

A study of quantitative structure-activity relationship (QSAR) is applied to a set of 24 molecules derived from diarylaniline to predict the anti-HIV-1 biological activity of the test compounds and find a correlation between the different physic-chemical parameters (descriptors) of these compounds and its biological activity, using principal components analysis (PCA), multiple linear regression (MLR), multiple non-linear regression (MNLR) and the artificial neural network (ANN). We accordingly proposed a quantitative model (non-linear and linear QSAR models), and we interpreted the activity of the compounds relying on the multivariate statistical analysis. The topological descriptors were computed with ACD/ChemSketch and ChemBioOffice14.0 programs. A correlation was found between the experimental activity and those obtained by MLR and MNLR such as (Rtrain = 0.886 ; R2train = 0.786) and (Rtrain = 0.925 ; R2train = 0.857) for the training set compounds, and (RMLR-test = 0.6) and (RMNLR-test = 0.7) for a randomly chosen test set of compounds, this result could be improved with ANN such as (R = 0.916 and R2 = 0.84) with an architecture ANN (6-1-1). To evaluate the performance of the neural network and the validity of our choice of descriptors selected by MLR and trained by MNLR and ANN, we used cross-validation method (CV) including (R = 0.903 and R2 = 0.815) with the procedure leave-one-out (LOO). The results showed that the MLR and MNLR have served to predict activities, but when compared with the results given by a 6-1-1 ANN model. We realized that the predictions fulfilled by the latter model were more effective than the other models. The statistical results indicated that this model is statistically significant and showing a very good stability towards the data variation in leave-one-out (LOO) cross validation.

Graphical Abstract

Study of Quantitative Structure-Activity Relationship (QSAR) of Diarylaniline Analogues as in Vitro Anti-HIV-1 Agents in Pharmaceutical Interest

Keywords

Main Subjects

 

 

 

[1]. Mandal A.S., Roy K., Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives, European journal of medicinal chemistry, 2009, 44:1509 [Crossref], [Google Scholar], [Publisher]
[2]. Vadivelan S., Deeksha T.N., Arun S., Machiraju P.K., Gundla R., Sinha B.N., Jagarlapudi S.A., Virtual screening studies on HIV-1 reverse transcriptase inhibitors to design potent leads, European journal of medicinal chemistry, 2011,  46:851 [Crossref], [Google Scholar], [Publisher]
[3]. Corbett J.W., Gearhart L.A., Ko S.S., Rodgers J.D., Cordova B.C., Klabe R.M., Erickson-Viitanen S.K., Novel 2, 2-dioxide-4, 4-disubstituted-1, 3-H-2, 1, 3-benzothiadiazines as non-nucleoside reverse transcriptase inhibitors, Bioorganic & medicinal chemistry letters, 2000, 10:193 [Crossref], [Google Scholar], [Publisher]
[4]. Masuda N., Yamamoto O., Fujii M., Ohgami T., Fujiyasu J., Kontani T., Moritomo A., Orita M., Kurihara H., Koga H., Kageyama S., Ohta M., Inoue H., Hatta T., Shintani M., Suzuki H., Sudo K., Shimizu Y., Kodama E., Matsuoka M., Fuji-wara M., Yokota T., Shigeta S., Baba M., Studies of non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 2: Synthesis and structure–activity relationships of 2-cyano and 2-hydroxy thiazolidenebenzenesulfonamide derivatives, Bioorganic & medicinal chemistry, 2005, 13:949 [Crossref], [Google Scholar], [Publisher]
[5]. Spallarossa A., Cesarini S., Ranise A., Schenone S., Bruno O., Borassi A., Colla P.L., Pezzullo M., Sanna G., Collu G., Secci B., Loddo R., Parallel synthesis, molecular modelling and further structure–activity relationship studies of new acylthiocarbamates as potent non-nucleoside HIV-1 reverse transcriptase inhibitors, European journal of medicinal chemistry, 2009,  44:2190 [Crossref], [Google Scholar], [Publisher]
[6]. Weitman M., Lerman K., Nudelman A., Major D.T., Hizi A., Herschhorn A.,  Structure–activity relationship studies of 1-(4-chloro-2, 5-dimethoxyphenyl)-3-(3-propoxypropyl) thiourea, a non-nucleoside reverse transcriptase inhibitor of human immunodeficiency virus type-1, European journal of medicinal chemistry, 2011, 46:447 [Crossref], [Google Scholar], [Publisher]
[7]. De La Rosa M., Kim H.W., Gunic E., Jenket C., Boyle U., Koh Y.H., Korboukh I., Allan M., Zhang W., Chen H., Xu W., Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase, Bioorganic & medicinal chemistry letters, 2006, 16:4444 [Crossref], [Google Scholar], [Publisher]
[8]. Ellis D., Kuhen K.L., Anaclerio B., Wu B., Wolff K., Yin H., Bursulaya B., Caldwell J., Karanewsky D., He Y., Design, synthesis, and biological evaluations of novel quinolones as HIV-1 non-nucleoside reverse transcriptase inhibitors, Bioorganic & medicinal chemistry letters, 2006, 16:4246 [Crossref], [Google Scholar], [Publisher]
[9]. Rios A., Quesada J., Anderson D., Goldstein A., Fossum T., Colby-Germinario S., Wainberg M.A., Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors, Virus research, 2011, 155:189 [Crossref], [Google Scholar], [Publisher]
[10]. Spallarossa A., Cesarini S., Ranise A., Bruno O., Schenone S., La Colla P., Collu G., Sanna G., Secci B., Loddo R., Novel modifications in the series of O-(2-phthalimidoethyl)-N-substituted thiocarbamates and their ring-opened congeners as non-nucleoside HIV-1 reverse transcriptase inhibitors. European journal of medicinal chemistry, 2009, 44:1650 [Crossref], [Google Scholar], [Publisher]
[11] He Y., Chen F., Sun G., Wang Y., De Clercq E., Balzarini J., Pannecouque C., 5-Alkyl-2-[(aryl and alkyloxylcarbonylmethyl) thio]-6-(1-naphthylmethyl) pyrimidin-4 (3H)-ones as an unique HIV reverse transcriptase inhibitors of S-DABO series. Bioorganic & Medicinal Chemistry Letters, 2004, 14:3173 [Crossref], [Google Scholar], [Publisher]
[12]. Monforte A.M., Logoteta P., De Luca L., Iraci N., Ferro S., Maga G., De Clercq E., Pannecouque C., Chimirri A., Novel 1, 3-dihydro-benzimidazol-2-ones and their analogues as potent non-nucleoside HIV-1 reverse transcriptase inhibitors, Bioorganic & medicinal chemistry, 2010, 18:1702 [Crossref], [Google Scholar], [Publisher]
[13]. Liang Y.H., He Q.Q., Zeng Z.S., Liu Z.Q., Feng X.Q., Chen F.E., Balzarini J., Pannecouque C., De Clercq E., Synthesis and anti-HIV activity of 2-naphthyl substituted DAPY analogues as non-nucleoside reverse transcriptase inhibitors, Bioorganic & medicinal chemistry, 2010, 18:4601 [Crossref], [Google Scholar], [Publisher]
[14]. Zeng Z.S., He Q.Q., Liang Y.H., Feng X.Q., Chen F.Er., DeClercq E., Balzarini J., Pannecouque C., Hybrid diarylbenzopyrimidine non-nucleoside reverse transcriptase inhibitors as promising new leads for improved anti-HIV-1 chemotherapy, Bioorganic & medicinal chemistry, 2010, 18:5039 [Crossref], [Google Scholar], [Publisher]
[15]. Qin B., Jiang X., Lu H., Tian X., Barbault F., Huang L., Qian K., Chen C.H., Huang R., Jiang S., Lee K.H., Diarylaniline derivatives as a distinct class of HIV-1 non-nucleoside reverse transcriptase inhibitors, Journal of medicinal chemistry, 2010, 53:4906 [Crossref], [Google Scholar], [Publisher]
[16]. Nantasenamat C., Isarankura Na Ayudhya C, Naenna T, Prachayasittikul V. A practical overview of quantitative structure-activity relationship. Excli J, 2009, 8:74 [Google Scholar]
[17]. Nantasenamat C., Isarankura-Na-Ayudhya C., Prachayasittikul V., Advances in computational methods to predict the biological activity of compounds, Expert opinion on drug discovery, 2010, 5:633 [Crossref], [Google Scholar], [Publisher]
[18]. Mustafa Y.F., Chehardoli G., Habibzadeh S., Arzehgar Z., Electrochemical detection of sulfite in food samples. Journal of Electrochemical Science and Engineering, 2022, 12:1061 [Crossref], [Google Scholar], [Publisher]
[19]. ACD/ChemSketch Version 4.5 for Microsoft Windows User’s Guide [PDF]
[20]. Borowiecki P., Chemoenzymatic Synthesis of Optically Active Ethereal Analog of iso-Moramide—A Novel Potentially Powerful Analgesic, International Journal of Molecular Sciences, 2022, 23:11803 [Crossref], [Google Scholar], [Publisher]
[21]. Allinger N.L., Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, Journal of the American Chemical Society, 1977, 99:8127 [Crossref], [Google Scholar], [Publisher]
[22]. XLSTAT 2015 Add-in software (XLSTAT Company)
[23]. Boukarai Y., Khalil F., Bouachrine M., QSAR study of isatin (1H-indole-2, 3-dione) analogues as in vitro anti-cancer agents using the statistical analysis methods and the artificial neural network. International Journal of Scientific & Engineering Research, 2015, 6:159 [Google Scholar]
[24]. Boukarai Y., Khalil F., Bouachrine M., QSAR study of 5, 6-bicyclic heterocycles analogues as anti-Alzheimer’s agents using the statistical analysis methods. Journal of Chemical and Pharmaceutical Research, 2016, 8:1000 [Google Scholar]
[25]. Zupan J., Gasteiger J., Neural networks for chemists: an introduction. John Wiley & Sons, 1993 [Google Scholar], [Publisher]
[26]. Cherqaoui D., Villemin D., Use of a neural network to determine the boiling point of alkanes, Journal of the Chemical Society, Faraday Transactions, 1994, 90:97 [Crossref], [Google Scholar], [Publisher]
[27]. Freeman J.A., Skapura D.M., Neural networks: algorithms, applications, and programming techniques. Addison Wesley Longman Publishing Co., Inc. 1991 [Google Scholar], [Publisher]
[28]. Efron B., Estimating the error rate of a prediction rule: improvement on cross-validation, Journal of the American statistical association, 1983, 78:316 [Crossref], [Google Scholar], [Publisher]
[29]. Efroymson M.A., Multiple regression analysis. Mathematical methods for digital computers, 1960, 191 [Google Scholar], [Publisher]
[30]. Osten D.W., Selection of optimal regression models via cross‐validation, Journal of Chemometrics, 1998, 2:39 [Crossref], [Google Scholar], [Publisher]
[31]. Boukarai Y., Khalil F., Bouachrine M., Application of QSAR Methods on the Study of Bioactive Molecules Derived from Isatin. Journal of Chemical and Pharmaceutical Research, 2016, 8:136 [Google Scholar]
[32]. Boukarai Y., Khalil F., Bouachrine M., QSAR study of flavonoid derivatives as in vitro inhibitors agents of Aldose Reductase (ALR2) enzyme for diabetic complications. Journal of Materials and Environmental Science, 2017, 8:1532 [PDF], [Google Scholar]
[33]. So S.S., Richards W.G., Application of neural networks: quantitative structure-activity relationships of the derivatives of 2, 4-diamino-5-(substituted-benzyl) pyrimidines as DHFR inhibitors, Journal of Medicinal Chemistry, 1992, 35:3201 [Crossref], [Google Scholar], [Publisher]
[34]. Andrea T.A., Kalayeh H., Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors, Journal of medicinal chemistry, 1991, 34:2824 [Crossref], [Google Scholar], [Publisher]