Impact Factor: 5.6     h-index: 26

Document Type : Original Article


School of physics, Iran University of Science and Technology (IUST), 16846-13114, Tehran, Iran



In this work, silver thin films were prepared using sputtering at different deposition times with the nanoscale thickness. To investigate their surface morphology, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed. The surface topography of the samples studied using the AFM. The results revealed that, the roughness of the thin films enhanced by increasing the sputtering time. The permutation entropy (PE) was introduced as an interesting parameter to characterize the surface morphology. At the best of our knowledge, it is the first time one uses the PE for characterizing the thin films. Although the roughness might always enhance by increasing the film thickness, it was not the case for PE. The PE was found to be an independent parameter for characterizing the surface of thin film.

Graphical Abstract

Permutation Entropy as a Parameter of Characterizing the Surface of a Thin Film


Main Subjects

[1] Barabasi A.L., Stanley H.E. Fractal Concepts in Surface Growth. Cambridge University Press, 1995.
[2] Zhao Y., Wang G.C., Lu T.M. Characterization of Amorphous and Crystalline Rough Surface - Principles and Applications. Elsevier Science, 2000.
[3] Bandt C., Pompe B. Phys. Rev. Lett., 2002, 88:174102
[4] Zunino L., Soriano M.C., Fischer I., Rosso O.A., Mirasso C.R. Phys. Rev. E Stat. Nonlin Soft Matter Phys., 2010, 82:046212
[5] Cao Y., Tung W.W., Gao J.B., Protopopescu V.A., Hively L.M. Phys. Rev. E Stat .Nonlin Soft Matter Phys., 2004, 70:046217
[6] Otsuki, T., Yoshioka Y., Holian A. Biological Effects of Fibrous and Particulate Substances. Current Topics in Environmental Health and Preventive Medicine. 2015: Springer Japan.
[7] Jiang, Y., Pillai S., Green M. J. Appl. Phys., 2016, 120:233109
[8] Taneja P., Ayyub P., Chandra R. Phys. Rev. B, 2002, 65:245412
[9] Mirzaei, A., Janghorban K., Hashemi B., Bonyani M., Leonardi S.G., Neri G. J. Nanostruct. Chem., 2017, 7:37
[10] Zhang C., Kinsey N., Chen L., Ji C., Xu M., Ferrera M., Pan X., Shalaev V.M., Boltasseva A., Guo L.J. Adv. Mater., 2017, 29:1605177
[11] Jiu J., Sugahara T, Nogi M, Araki T, Suganuma K, Uchida H, Shinozaki K. Nanoscale, 2013, 5:11820
[12] Velammal, S.P., Devi T.A., Amaladhas T.P. J. Nanostruct. Chem., 2016, 6:247
[13] Lateef A., Azeez M.A., Asafa T.B., Yekeen T.A., Akinboro A., Oladipo I.C., Azeez L., Ojo S.A., Gueguim-Kana E.B., Beukes L.S. J. Nanostruct. Chem., 2016, 6:159
[14] Desai P.P., Prabhurajeshwar C., Chandrakanth K.R. J. Nanostruct. Chem., 2016, 6:235
[15] Kato Y., Ono L.K., Lee M.V., Wang S., Raga S.R., Qi Y. Adv. Mater. Interfaces, 2015, 2:1500195
[16] Perumal, J., Kong K.V., Dinish U.S., Bakker R.M., Olivo M. RSC Adv., 2014, 25:12995
[17] Geagea, R., Aubert P.H., Banet P., Sanson N. Chem. Commun., 2015, 51:402
[18] Wood A., Bok S., Mathai J., Chen B., Suresh D., Gangopadhyay K., Grant S., Upendran A., Kannan R., Gangopadhyay S., Anti-corrosive films on silver plasmonic gratings for fluorescence imaging of single molecules and cancer cells. In CLEO: Science and Innovations, Conference on optical Society of America. 2016
[19] Zhao H., Ni Z., Ye F. Surface Eng., 2016, 32:307
[20] Li N., Liu Z.T., Feng L.P., Jia R.T. Surface Eng., 2016, 32:299
[21] Nasehnejad M., Nabiyouni G., Shahraki M.G. J. Phys. D: Appl. Phys., 2017, 50:375301
[22] Nasehnejad M., Nabiyouni G., Shahraki M.G. Surface Eng., 2017, 33:389
[23] Nasehnejad M., Nabiyouni G., Shahraki M.G. Phys. A: Statist. Mechanics Appl., 2018, 493:135
[24] Family F. Vicsek A.T. J. Phys. A: Mathemat. General, 1985, 18:L75