Web of Science (IF=5.6, Q2) , ISC (Q1) , MSRT, CAS

Document Type : Original Article


1 Director of Ilam Petrochemical Company, Ilam, Iran

2 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Iran


A quantitative structure–retention relationship (QSRR), was developed by using the genetic algorithm-partial least square (GA-PLS), Kernel partial least square (GA-KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) approach for the prediction of the retention time (RT) of the doping agents in urine. The values of the retention time were obtained by using ultra-high-pressure liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). A suitable set of the molecular descriptors was calculated and the important descriptors were selected by the aid of the GA-PLS and GA-KPLS. By comparing the results, GA-KPLS descriptors are selected for L-M ANN. Finally a model with a low prediction error and a good correlation coefficient was obtained by L-M ANN. This model was used to predict the RT values of some of doping agents which were not used in the modeling procedure. This is the first research on the QSRR of doping agents against the RT using the GA-PLS, GA-KPLS and L-M ANN model.

Graphical Abstract

Approach to Chemometrics Models by Artificial Neural Network for Structure: First Applications for Estimation Retention Time of Doping Agent


[1]. Parssinen M., Seppala T., Steroid use and long-term health risks in former athletes. Sports medicine, 2002, 32:83 [Crossref], [Google Scholar], [Publisher]
[2]. Gruber A.J., Pope H.G., Psychiatric and medical effects of anabolic-androgenic steroid use in women. Psychotherapy and psychosomatics, 2000, 69:19 [Crossref], [Google Scholar], [Publisher]
[3]. Scarth J.P., Clarke A.D., Teale Ph., Pearce C.M., Comparative in vitro metabolism of the ‘designer’steroid estra-4, 9-diene-3, 17-dione between the equine, canine and human: Identification of target metabolites for use in sports doping control, Steroids, 2010, 75:643 [Crossref], [Google Scholar], [Publisher]
[4]. Belova  D. D., Kharchenko E. N., Chaplygina O., S., Identification of Residual Traces of Antibiotics in Food, Journal of Medicinal and Chemical Sciences, 2022, 5:385 [Crossref], [Google Scholar], [Publisher]
[5]. World Anti-doping Agency (WADA), The World Anti-Doping Code. Minimal Required Performance Limits, Technical Document TD2004MRPL, Montreal (accessed May 2009) [Publisher]
[6]. Van Eenoo P., Delbeke F.T., Criteria in chromatography and mass spectrometry–a comparison between regulations in the field of residue and doping analysis, Chromatographia, 2004, 59:39 [Crossref], [Google Scholar], [Publisher]
[7]. Turkey N. S., Fadhel G., Chlorpromazine-HCl Determination via Its Oxidation with Sodium Nitrite in Sulfanilic Acid Medium via CFIA Technique through Long Distance Chasing Photometer NAG-ADF-300-2, Journal of Medicinal and Chemical Sciences, 2022, 5:283 [Crossref], [Google Scholar], [Publisher]
[8]. Rivier L., Criteria for the identification of compounds by liquid chromatography–mass spectrometry and liquid chromatography–multiple mass spectrometry in forensic toxicology and doping analysis, Analytica chimica acta, 2003, 492:69 [Crossref], [Google Scholar], [Publisher]
[9]. Hadef Y., Kaloustian J., Portugal H., Nicolay A., Multivariate optimization of a derivatisation procedure for the simultaneous determination of nine anabolic steroids by gas chromatography coupled with mass spectrometry, Journal of Chromatography A, 2008, 1190:278 [Crossref], [Google Scholar], [Publisher]
[10]. Schappler J., Guillarme D., Rudaz S., Veuthey J.L., Microemulsion electrokinetic chromatography hyphenated to atmospheric pressure photoionization mass spectrometry, Electrophoresis, 2008, 29:11 [Crossref], [Google Scholar], [Publisher]
[11]. Caslavska J., Thormann W., Rapid analysis of furosemide in human urine by capillary electrophoresis with laser-induced fluorescence and electrospray ionization-ion trap mass spectrometric detection, Journal of Chromatography B, 2002, 770:207 [Crossref], [Google Scholar], [Publisher]
[12] Mateus-Avois L., Mangin P., Saugy M., Development and validation of a capillary zone electrophoresis method for the determination of ephedrine and related compounds in urine without extraction, Journal of Chromatography B, 2003, 791:203[Crossref], [Google Scholar], [Publisher]
[13] Giancotti V., Medana C., Aigotti R., Pazzi M., Baiocchi C., LC–high-resolution multiple stage spectrometric analysis of diuretic compounds: Unusual mass fragmentation pathways, Journal of pharmaceutical and biomedical analysis, 2008, 48:462 [Crossref], [Google Scholar], [Publisher]
[14] Deventer K., Pozo O.J., Van Eenoo P., Delbeke F.T., Development and validation of an LC–MS/MS method for the quantification of ephedrines in urine, Journal of Chromatography B, 2009, 877:369 [Crossref], [Google Scholar], [Publisher]
[15] Gika H.G., Macpherson E., Theodoridis G.A., Wilson I.D., Evaluation of the repeatability of ultra-performance liquid chromatography–TOF-MS for global metabolic profiling of human urine samples, Journal of Chromatography B, 2008, 871:299 [Crossref], [Google Scholar], [Publisher]
[16] Touber M.E., van Engelen M.C., Georgakopoulos C., van Rhijn J.A., Nielen M.W.F., Multi-detection of corticosteroids in sports doping and veterinary control using high-resolution liquid chromatography/time-of-flight mass spectrometry, Analytica Chimica Acta, 2007, 586:137 [Crossref], [Google Scholar], [Publisher]
[17] Williamson L.N., Bartlett M.G., Quantitative liquid chromatography/time‐of‐flight mass spectrometry, Biomedical Chromatography, 2007, 21:567 [Crossref], [Google Scholar], [Publisher]
[18]. Gupta V.K., Khani H., Ahmadi-Roudi B., Mirakhorli Sh., Fereyduni E., Agarwal S., Prediction of capillary gas chromatographic retention times of fatty acid methyl esters in human blood using MLR, PLS and back-propagation artificial neural networks, Talanta, 2011, 83:1014 [Crossref], [Google Scholar], [Publisher]
[19]. Matteis C.I.D., Simpson D.A., Doughty S.W., Euerby M.R., Shaw P.N., Barrett D.A., Chromatographic retention behaviour of n-alkylbenzenes and pentylbenzene structural isomers on porous graphitic carbon and octadecyl-bonded silica studied using molecular modelling and QSRR, Journal of Chromatography A, 2010, 1217:6987 [Crossref], [Google Scholar], [Publisher]
[20]. Liu T., Nicholls I.A., Öberg T.,  Comparison of theoretical and experimental models for characterizing solvent properties using reversed phase liquid chromatography, Analytica chimica acta, 2011, 702:37 [Crossref], [Google Scholar], [Publisher]
[21]. Riahi S., Pourbasheer E., Ganjali M.R., Norouzi P., Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: Concerns to support vector machine, Journal of hazardous materials, 2009, 166:853 [Crossref], [Google Scholar], [Publisher]
[22]. Bodzioch K., Durand A., Kaliszan R., Bączek T., Vander Heyden Y., Advanced QSRR modeling of peptides behavior in RPLC, Talanta, 2010, 81:1711 [Crossref], [Google Scholar], [Publisher]
[23]. Lavine B.K., Rayens W.S., Brown S.D., Tauler, R., Walczak B., 2009. Comprehensive Chemometrics, 2009, 120:631 [Google Scholar]
[24]. Ferrand M., Huquet B., Barbey S., Barillet F., Faucon F., Larroque H., Leray O., Trommenschlager J.M., Brochard M., Determination of fatty acid profile in cow's milk using mid-infrared spectrometry: Interest of applying a variable selection by genetic algorithms before a PLS regression, Chemometrics and Intelligent Laboratory Systems, 2011, 106:183 [Crossref], [Google Scholar], [Publisher]
[25]. Badoud F., Grata E., Perrenoud L., Avois L., Saugy M., Rudaz S., Veuthey J.L., J. Chromatogr. A. 2009, 1216:4423 [Crossref], [Google Scholar], [Publisher]
[26]. Devos O., Duponchel L., Parallel genetic algorithm co-optimization of spectral pre-processing and wavelength selection for PLS regression. Chemometrics and Intelligent Laboratory Systems, 2011, 107:50 [Crossref], [Google Scholar], [Publisher]
[27]. Hemmateenejad B., Shamsipur M., Zare-Shahabadi V., Akhond M., Building optimal regression tree by ant colony system–genetic algorithm: Application to modeling of melting points. Analytica chimica acta, 2011, 704:57 [Crossref], [Google Scholar], [Publisher]
[28]. Pourbasheer E., Riahi S., Ganjali M.R., Norouzi P., Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. European journal of medicinal chemistry, 2009, 44:5023 [Crossref], [Google Scholar], [Publisher]
[29]. Singh K.P., Ojha P., Malik A., Jain G.,  Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution, Chemometrics and Intelligent Laboratory Systems, 2009, 99:150 [Crossref], [Google Scholar], [Publisher]
[30]. Jančić-Stojanović B., Ivanović D., Malenović A., Medenica M., Artificial neural networks in analysis of indinavir and its degradation products retention, Talanta, 2009, 78:107 [Crossref], [Google Scholar], [Publisher]
[31]. Jalali-Heravi M., Asadollahi-Baboli M., Shahbazikhah P., QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg–Marquardt algorithm, European journal of medicinal chemistry, 2008, 43:548 [Crossref], [Google Scholar], [Publisher]
[32]. Xuefeng Y., Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors, Chemometrics and Intelligent Laboratory Systems, 2010, 103:152 [Crossref], [Google Scholar], [Publisher]
[33]. Singh K.P., Basant N., Malik A., Jain G., Modeling the performance of “up-flow anaerobic sludge blanket” reactor based wastewater treatment plant using linear and nonlinear approaches—a case study, Analytica Chimica Acta, 2010, 658:1 [Crossref], [Google Scholar], [Publisher]
[34]. Kim K., Lee J.M., Lee I.B., A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction, Chemometrics and intelligent laboratory systems, 2005, 79:22 [Crossref], [Google Scholar], [Publisher]
[35]. D’Archivio A.A., Maggi M.A., Mazzeo P., Ruggieri F., Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors, Analytica chimica acta, 2008, 628:162 [Crossref], [Google Scholar], [Publisher]
[36]. Jančić B., Medenica M., Ivanović D., Janković S., Malenović A., Monitoring of fosinopril sodium impurities by liquid chromatography–mass spectrometry including the neural networks in method evaluation, Journal of Chromatography a, 2008, 1189:366 [Crossref], [Google Scholar], [Publisher]
[37] Todeschini R., Consonni V., Handbook of molecular descriptors, John Wiley & Sons, 2008 [Google Scholar], [Publisher]
[38] Deeb O., Correlation ranking and stepwise regression procedures in principal components artificial neural networks modeling with application to predict toxic activity and human serum albumin binding affinity, Chemometrics and Intelligent Laboratory Systems, 2010, 104:181 [Crossref], [Google Scholar], [Publisher]
[39] Kishore D.P., Balakumar C., A.R. Rao, Roy P.P., Roy K., QSAR of adenosine receptor antagonists: Exploring physicochemical requirements for binding of pyrazolo [4, 3-e]-1, 2, 4-triazolo [1, 5-c] pyrimidine derivatives with human adenosine A3 receptor subtype, Bioorganic & medicinal chemistry letters, 2011, 21:818 [Crossref], [Google Scholar], [Publisher]
[40] Arab Chamjangali M., Beglari M., Bagherian G., Prediction of cytotoxicity data (CC50) of anti-HIV 5-pheny-l-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg–Marquardt algorithm, Journal of Molecular Graphics and Modelling, 2007, 26:360 [Crossref], [Google Scholar], [Publisher]
[41] Hemmateenejad B., Javadnia K., Elyasi M., Quantitative structure–retention relationship for the Kovats retention indices of a large set of terpenes: A combined data splitting-feature selection strategy, Analytica chimica acta, 2007, 592:72 [Crossref], [Google Scholar], [Publisher]